Pierrat Zoe Amie, Magney Troy S, Richardson Will P, Runkle Benjamin R K, Diehl Jen L, Yang Xi, Woodgate William, Smith William K, Johnston Miriam R, Ginting Yohanes R S, Koren Gerbrand, Albert Loren P, Kibler Christopher L, Morgan Bryn E, Barnes Mallory, Uscanga Adriana, Devine Charles, Javadian Mostafa, Meza Karem, Julitta Tommaso, Tagliabue Giulia, Dannenberg Matthew P, Antala Michal, Wong Christopher Y S, Santos Andre L D, Hufkens Koen, Marrs Julia K, Stovall Atticus E L, Liu Yujie, Fisher Joshua B, Gamon John A, Cawse-Nicholson Kerry
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91011, USA.
Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
New Phytol. 2025 Apr;246(2):419-436. doi: 10.1111/nph.20405. Epub 2025 Jan 23.
A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or 'proximal' remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions. We provide current best practices for data availability and metadata for proximal remote sensing: spectral reflectance, solar-induced fluorescence, thermal infrared radiation, microwave backscatter, and LiDAR. Our paper outlines the steps necessary for making these data streams more widespread, accessible, interoperable, and information-rich, enabling us to address key ecological questions unanswerable from space-based observations alone and, ultimately, to demonstrate the feasibility of these technologies to address critical questions in local and global ecology.
一种新型的光学仪器大量涌现,这些仪器可以安装在生态系统上方或内部的塔架上,即“近距离”遥感,它能够全面表征陆地生态系统的结构、功能以及能量、水和碳的通量。近距离遥感可以通过提供高时空分辨率的连续数据,弥合个体植物、站点级涡度协方差通量以及机载和星载遥感之间的差距。在此,我们回顾了近距离遥感在增进我们对植物和生态系统过程的机理理解、模型开发以及对当前和未来卫星任务进行验证方面的最新进展。我们提供了近距离遥感数据可用性和元数据的当前最佳实践:光谱反射率、太阳诱导荧光、热红外辐射、微波后向散射和激光雷达。我们的论文概述了使这些数据流更广泛、可获取、可互操作且信息丰富所需的步骤,使我们能够解决仅靠天基观测无法回答的关键生态问题,并最终证明这些技术解决本地和全球生态学关键问题的可行性。