Suppr超能文献

构建用于快速无水质子传输的直链聚离子液体微通道。

Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport.

机构信息

Institute of Nanoscience of Aragon, Department of Chemical & Environmental Engineering, University of Zaragoza , Edif. I+D+i, Campus Rio Ebro. C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain.

Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain.

出版信息

ACS Appl Mater Interfaces. 2016 Dec 28;8(51):35377-35389. doi: 10.1021/acsami.6b13315. Epub 2016 Dec 15.

Abstract

Polymeric ionic liquids (PILs) have triggered great interest as all solid-state flexible electrolytes because of safety and superior thermal, chemical, and electrochemical stability. It is of great importance to fabricate highly conductive electrolyte membranes capable to operate above 120 °C under anhydrous conditions and in the absence of mineral acids, without sacrificing the mechanical behavior. Herein, the diminished dimensional and mechanical stability of poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide has been improved thanks to its infiltration on a polybenzimidale (PBI) support with specific pore architecture. Our innovative solution is based on the synergic combination of an emerging class of materials and sustainable large-scale manufacturing techniques (UV polymerization and replication by microtransfer-molding). Following this approach, the PIL plays the proton conduction role, and the PBI microsieve (SPBI) mainly provides the mechanical reinforcement. Among the resulting electrolyte membranes, conductivity values above 50 mS·cm at 200 °C and 10.0 MPa as tensile stress are shown by straight microchannels of poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide cross-linked with 1% of dyvinylbenzene embedded in a PBI microsieve with well-defined porosity (36%) and pore diameter (17 μm).

摘要

聚合离子液体(PILs)由于其安全性以及优异的热稳定性、化学稳定性和电化学稳定性,已成为全固态柔性电解质的研究热点。制备具有高导电性的电解质膜至关重要,这种电解质膜在无水条件下和没有矿物酸的情况下能够在 120°C 以上运行,同时不会牺牲其机械性能。在此,通过将具有特定孔结构的聚[1-(3H-咪唑基)乙烯]双(三氟甲烷磺酰基)亚胺渗透到聚亚苯并咪唑(PBI)支撑体上,提高了聚[1-(3H-咪唑基)乙烯]双(三氟甲烷磺酰基)亚胺的尺寸和机械稳定性。我们的创新解决方案基于一类新兴材料和可持续的大规模制造技术(UV 聚合和微转移成型复制)的协同组合。按照这种方法,PIL 起到质子传导作用,而 PBI 微筛(SPBI)主要提供机械增强。在所得到的电解质膜中,由直微通道组成的聚[1-(3H-咪唑基)乙烯]双(三氟甲烷磺酰基)亚胺的电导率在 200°C 和 10.0 MPa 的拉伸应力下超过 50 mS·cm,这些直微通道通过交联 1%的二乙烯基苯而形成,交联剂嵌入在具有明确孔隙率(36%)和孔径(17μm)的 PBI 微筛中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验