Kallem Parashuram, Charmette Christophe, Drobek Martin, Julbe Anne, Mallada Reyes, Pina Maria Pilar
Department of Chemical & Environmental Engineering, Institute of Nanoscience of Aragon, University of Zaragoza, Edif. I+D+i, Campus Rio Ebro, C/Mariano Esquillor, 50018 Zaragoza, Spain.
IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Université de Montpellier, CC047, Place Eugène Bataillon, 34095 Montpellier, France.
Membranes (Basel). 2018 Sep 5;8(3):75. doi: 10.3390/membranes8030075.
This experimental study explores the potential of supported ionic liquid membranes (SILMs) based on protic imidazolium ionic liquids (ILs) and randomly nanoporous polybenzimidazole (PBI) supports for CH₄/N₂ separation. In particular, three classes of SILMs have been prepared by the infiltration of porous PBI membranes with different protic moieties: 1-H-3-methylimidazolium bis (trifluoromethane sulfonyl)imide; 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide followed by in situ ultraviolet (UV) polymerization to poly[1-(3H-imidazolium)ethylene] bis(trifluoromethanesulfonyl)imide. The polymerization process has been monitored by Fourier transform infrared (FTIR) spectroscopy and the concentration of the protic entities in the SILMs has been evaluated by thermogravimetric analysis (TGA). Single gas permeability values of N₂ and CH₄ at 313 K, 333 K and 363 K were obtained from a series of experiments conducted in a batch gas permeance system. The results obtained were assessed in terms of the preferential cavity formation and favorable solvation of methane in the apolar domains of the protic ionic network. The most attractive behavior exhibited poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide polymeric ionic liquid (PIL) cross-linked with 1% divinylbenzene supported membranes, showing stable performance when increasing the upstream pressure. The CH₄/N₂ permselectivity value of 2.1 with CH₄ permeability of 156 Barrer at 363 K suggests that the transport mechanism of the as-prepared SILMs is solubility-dominated.
本实验研究探讨了基于质子咪唑鎓离子液体(ILs)和随机纳米多孔聚苯并咪唑(PBI)载体的支撑离子液体膜(SILMs)用于CH₄/N₂分离的潜力。具体而言,通过用不同质子部分渗透多孔PBI膜制备了三类SILMs:1-H-3-甲基咪唑鎓双(三氟甲烷磺酰)亚胺;1-H-3-乙烯基咪唑鎓双(三氟甲烷磺酰)亚胺,随后进行原位紫外(UV)聚合得到聚[1-(3H-咪唑鎓)乙烯]双(三氟甲烷磺酰)亚胺。通过傅里叶变换红外(FTIR)光谱监测聚合过程,并通过热重分析(TGA)评估SILMs中质子实体的浓度。在间歇式气体渗透系统中进行了一系列实验,获得了313 K、333 K和363 K下N₂和CH₄的单气体渗透率值。根据质子离子网络非极性区域中甲烷优先空穴形成和有利溶剂化作用对所得结果进行了评估。与1%二乙烯基苯交联的聚[1-(3H-咪唑鎓)乙烯]双(三氟甲烷磺酰)亚胺聚合物离子液体(PIL)支撑膜表现出最具吸引力的行为,在增加上游压力时性能稳定。在363 K下,CH₄/N₂渗透选择性值为2.1,CH₄渗透率为156 Barrer,这表明所制备的SILMs的传输机制是以溶解度为主导的。