Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
J Control Release. 2017 Jan 28;246:164-173. doi: 10.1016/j.jconrel.2016.10.028. Epub 2016 Oct 27.
On-demand delivery of therapeutics plays an essential role in simplifying and improving patient care. The high loading capacity of reduced graphene oxide (rGO) for drugs has made this matrix of particular interest for its hybridization with therapeutics. In this work, we describe the formulation of rGO impregnated poly(ethylene glycol) dimethacrylate based hydrogels (PEGDMA-rGO) and their efficient loading with insulin. Near-infrared (NIR) light induced heating of the PEGDMA-rGO hydrogels allows for highly efficient insulin release. Most importantly, we validate that the NIR irradiation of the hydrogel has no effect on the biological and metabolic activities of the released insulin. The ease of insulin loading/reloading makes this photothermally triggered release strategy of interest for diabetic patients. Additionally, the rGO-based protein releasing platform fabricated here can be expanded towards 'on demand' release of various other therapeutically relevant biomolecules.
按需递送治疗剂在简化和改善患者护理方面起着至关重要的作用。还原氧化石墨烯(rGO)对药物的高载药能力使其成为与治疗剂杂化的特别感兴趣的基质。在这项工作中,我们描述了 rGO 浸渍的聚(乙二醇)二甲基丙烯酸酯基水凝胶(PEGDMA-rGO)的配方及其与胰岛素的有效负载。近红外(NIR)光诱导 PEGDMA-rGO 水凝胶的加热允许高效释放胰岛素。最重要的是,我们验证了水凝胶的近红外辐射对释放胰岛素的生物和代谢活性没有影响。胰岛素的加载/再加载很容易,这使得这种光热触发的释放策略对糖尿病患者具有吸引力。此外,这里制造的基于 rGO 的蛋白质释放平台可以扩展到各种其他治疗相关生物分子的“按需”释放。