Herrero Carlos P, Ramírez Rafael
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
J Chem Phys. 2016 Dec 14;145(22):224701. doi: 10.1063/1.4971453.
Path-integral molecular dynamics (PIMD) simulations have been carried out to study the influence of quantum dynamics of carbon atoms on the properties of a single graphene layer. Finite-temperature properties were analyzed in the range from 12 to 2000 K, by using the LCBOPII effective potential. To assess the magnitude of quantum effects in structural and thermodynamic properties of graphene, classical molecular dynamics simulations have been also performed. Particular emphasis has been laid on the atomic vibrations along the out-of-plane direction. Even though quantum effects are present in these vibrational modes, we show that at any finite temperature classical-like motion dominates over quantum delocalization, provided that the system size is large enough. Vibrational modes display an appreciable anharmonicity, as derived from a comparison between kinetic and potential energies of the carbon atoms. Nuclear quantum effects are found to be appreciable in the interatomic distance and layer area at finite temperatures. The thermal expansion coefficient resulting from PIMD simulations vanishes in the zero-temperature limit, in agreement with the third law of thermodynamics.
已开展路径积分分子动力学(PIMD)模拟,以研究碳原子的量子动力学对单层石墨烯性质的影响。通过使用LCBOPII有效势,在12至2000 K的温度范围内分析了有限温度下的性质。为了评估量子效应在石墨烯结构和热力学性质中的大小,还进行了经典分子动力学模拟。特别强调了沿面外方向的原子振动。尽管在这些振动模式中存在量子效应,但我们表明,只要系统尺寸足够大,在任何有限温度下,类经典运动都比量子离域占主导地位。从碳原子的动能和势能的比较中可以看出,振动模式表现出明显的非谐性。发现在有限温度下,核量子效应在原子间距离和层面积方面较为显著。PIMD模拟得到的热膨胀系数在零温度极限下消失,这与热力学第三定律一致。