Suppr超能文献

受污染含水层和废水处理系统中推定的一氧化氮歧化酶(Nod)基因的意外多样性和高丰度

Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems.

作者信息

Zhu Baoli, Bradford Lauren, Huang Sichao, Szalay Anna, Leix Carmen, Weissbach Max, Táncsics András, Drewes Jörg E, Lueders Tillmann

机构信息

Institute of Groundwater Ecology, Helmholtz-Zentrum München, Neuherberg, Germany

Institute of Groundwater Ecology, Helmholtz-Zentrum München, Neuherberg, Germany.

出版信息

Appl Environ Microbiol. 2017 Feb 1;83(4). doi: 10.1128/AEM.02750-16. Print 2017 Feb 15.

Abstract

UNLABELLED

It has recently been suggested that oxygenic dismutation of NO into N and O may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 10 to 5.2 × 10 copies · g (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems.

IMPORTANCE

NO dismutation into N and O is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1, are known to harbor nod genes. In this study, we report efficient molecular tools that can detect and quantify a wide diversity of nod genes in environmental samples. A surprisingly high diversity and abundance of nod genes were found in contaminated aquifers as well as wastewater treatment systems. This evidence indicates that NO dismutation may be a much more widespread physiology in natural and man-made environments than currently perceived. The molecular tools presented here will facilitate further studies on these enigmatic microbes in the future.

摘要

未标记

最近有人提出,在厌氧甲烷氧化菌“食烷甲基奇异菌(暂未培养)”和烷烃氧化γ-变形菌HdN1中,可能会发生一氧化氮(NO)的氧歧化反应生成氮气(N)和氧气(O)。这可能代表了微生物氮循环中的一条新途径,由一种假定的NO歧化酶(Nod)催化。生成的O使微生物能够在缺氧环境中利用有氧分解代谢途径,这表明其生态生理生态位空间对生物修复和水处理具有很大吸引力。然而,这种生理特性是否仅限于“食烷甲基奇异菌(暂未培养)”和HdN1,以及它是否能与除烷烃以外的电子供体的氧化作用相耦合,目前仍不清楚。在这里,我们报告了对自然和工程水系统中意外的nod基因多样性和显著丰度的见解。从一系列受污染的含水层和脱氮废水处理系统中回收了系统发育多样的nod基因。与来自“食烷甲基奇异菌(暂未培养)”和HdN1的nod基因一起,新的环境nod序列形成了不少于6个得到充分支持的系统发育簇,明显不同于经典的NO还原酶(依赖泛醌的NO还原酶[qNor]和依赖细胞色素c的NO还原酶[cNor])基因。在所研究的样品中,nod基因的丰度范围为每克(湿重)沉积物或污泥生物量中1.6×10至5.2×10个拷贝,占细菌16S rRNA基因总数的10%。从本质上讲,NO歧化可能是一种比目前所认为的更为广泛的生理特性。了解这种新出现的微生物能力的控制因素,可能为自然和工程水系统中的氮去除或污染物修复提供新途径。

重要性

NO歧化生成N和O是一种由假定的NO歧化酶(Nod)催化的新过程。迄今为止,已知只有两种细菌,即厌氧甲烷氧化菌“食烷甲基奇异菌(暂未培养)”和烷烃氧化γ-变形菌HdN1含有nod基因。在这项研究中,我们报告了能够检测和量化环境样品中多种nod基因的有效分子工具。在受污染的含水层以及废水处理系统中发现了令人惊讶的高多样性和丰度的nod基因。这一证据表明,NO歧化在自然和人造环境中可能是一种比目前所认为的更为广泛的生理特性。这里介绍的分子工具将有助于未来对这些神秘微生物的进一步研究。

相似文献

2
Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake.
Environ Microbiol. 2018 Jul;20(7):2598-2614. doi: 10.1111/1462-2920.14285. Epub 2018 Aug 20.
4
Nitric Oxide Dismutase () Genes as a Functional Marker for the Diversity and Phylogeny of Methane-Driven Oxygenic Denitrifiers.
Front Microbiol. 2019 Jul 10;10:1577. doi: 10.3389/fmicb.2019.01577. eCollection 2019.
5
Diversity, enrichment, and genomic potential of anaerobic methane- and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant.
Appl Microbiol Biotechnol. 2020 Aug;104(16):7201-7212. doi: 10.1007/s00253-020-10748-z. Epub 2020 Jun 30.
7
Reconnaissance of Oxygenic Denitrifiers in Agriculturally Impacted Soils.
mSphere. 2023 Jun 22;8(3):e0057122. doi: 10.1128/msphere.00571-22. Epub 2023 Apr 5.
10
Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil.
Appl Microbiol Biotechnol. 2017 Sep;101(18):7075-7084. doi: 10.1007/s00253-017-8416-0. Epub 2017 Aug 4.

引用本文的文献

1
Anaerobic degradation of polycyclic aromatic hydrocarbons.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0226824. doi: 10.1128/aem.02268-24. Epub 2025 Apr 2.
3
Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems.
Environ Microbiol Rep. 2024 Oct;16(5):e70002. doi: 10.1111/1758-2229.70002.
4
A novel methanotroph potentially couples methane oxidation to iodate reduction.
mLife. 2022 Aug 9;1(3):323-328. doi: 10.1002/mlf2.12033. eCollection 2022 Sep.
6
Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems.
Nat Commun. 2023 Jun 13;14(1):3194. doi: 10.1038/s41467-023-38523-4.
7
Reconnaissance of Oxygenic Denitrifiers in Agriculturally Impacted Soils.
mSphere. 2023 Jun 22;8(3):e0057122. doi: 10.1128/msphere.00571-22. Epub 2023 Apr 5.
8
How low can they go? Aerobic respiration by microorganisms under apparent anoxia.
FEMS Microbiol Rev. 2022 May 6;46(3). doi: 10.1093/femsre/fuac006.
9
Nitric-oxide-driven oxygen release in anoxic .
iScience. 2021 Nov 6;24(12):103404. doi: 10.1016/j.isci.2021.103404. eCollection 2021 Dec 17.
10
Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications.
Front Microbiol. 2021 May 14;12:678057. doi: 10.3389/fmicb.2021.678057. eCollection 2021.

本文引用的文献

1
Archaea catalyze iron-dependent anaerobic oxidation of methane.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12792-12796. doi: 10.1073/pnas.1609534113. Epub 2016 Oct 24.
2
The role of residual quantities of suspended sludge on nitrogen removal efficiency in a deammonifying moving bed biofilm reactor.
Bioresour Technol. 2016 Nov;219:212-218. doi: 10.1016/j.biortech.2016.07.134. Epub 2016 Jul 30.
3
Methane dependent denitrification- from ecosystem to laboratory-scale enrichment for engineering applications.
Water Res. 2016 Aug 1;99:244-252. doi: 10.1016/j.watres.2016.04.070. Epub 2016 May 2.
4
Long-distance electron transfer by cable bacteria in aquifer sediments.
ISME J. 2016 Aug;10(8):2010-9. doi: 10.1038/ismej.2015.250. Epub 2016 Apr 8.
5
Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.
J Mol Microbiol Biotechnol. 2016;26(1-3):5-28. doi: 10.1159/000443997. Epub 2016 Mar 10.
6
NC10 bacteria in marine oxygen minimum zones.
ISME J. 2016 Aug;10(8):2067-71. doi: 10.1038/ismej.2015.262. Epub 2016 Feb 26.
7
Complete nitrification by a single microorganism.
Nature. 2015 Dec 24;528(7583):555-9. doi: 10.1038/nature16459. Epub 2015 Nov 26.
8
Complete nitrification by Nitrospira bacteria.
Nature. 2015 Dec 24;528(7583):504-9. doi: 10.1038/nature16461. Epub 2015 Nov 26.
9
Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.
Appl Environ Microbiol. 2015 Aug 15;81(16):5538-45. doi: 10.1128/AEM.00984-15. Epub 2015 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验