Zhu Baoli, Bradford Lauren, Huang Sichao, Szalay Anna, Leix Carmen, Weissbach Max, Táncsics András, Drewes Jörg E, Lueders Tillmann
Institute of Groundwater Ecology, Helmholtz-Zentrum München, Neuherberg, Germany
Institute of Groundwater Ecology, Helmholtz-Zentrum München, Neuherberg, Germany.
Appl Environ Microbiol. 2017 Feb 1;83(4). doi: 10.1128/AEM.02750-16. Print 2017 Feb 15.
It has recently been suggested that oxygenic dismutation of NO into N and O may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 10 to 5.2 × 10 copies · g (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems.
NO dismutation into N and O is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1, are known to harbor nod genes. In this study, we report efficient molecular tools that can detect and quantify a wide diversity of nod genes in environmental samples. A surprisingly high diversity and abundance of nod genes were found in contaminated aquifers as well as wastewater treatment systems. This evidence indicates that NO dismutation may be a much more widespread physiology in natural and man-made environments than currently perceived. The molecular tools presented here will facilitate further studies on these enigmatic microbes in the future.
最近有人提出,在厌氧甲烷氧化菌“食烷甲基奇异菌(暂未培养)”和烷烃氧化γ-变形菌HdN1中,可能会发生一氧化氮(NO)的氧歧化反应生成氮气(N)和氧气(O)。这可能代表了微生物氮循环中的一条新途径,由一种假定的NO歧化酶(Nod)催化。生成的O使微生物能够在缺氧环境中利用有氧分解代谢途径,这表明其生态生理生态位空间对生物修复和水处理具有很大吸引力。然而,这种生理特性是否仅限于“食烷甲基奇异菌(暂未培养)”和HdN1,以及它是否能与除烷烃以外的电子供体的氧化作用相耦合,目前仍不清楚。在这里,我们报告了对自然和工程水系统中意外的nod基因多样性和显著丰度的见解。从一系列受污染的含水层和脱氮废水处理系统中回收了系统发育多样的nod基因。与来自“食烷甲基奇异菌(暂未培养)”和HdN1的nod基因一起,新的环境nod序列形成了不少于6个得到充分支持的系统发育簇,明显不同于经典的NO还原酶(依赖泛醌的NO还原酶[qNor]和依赖细胞色素c的NO还原酶[cNor])基因。在所研究的样品中,nod基因的丰度范围为每克(湿重)沉积物或污泥生物量中1.6×10至5.2×10个拷贝,占细菌16S rRNA基因总数的10%。从本质上讲,NO歧化可能是一种比目前所认为的更为广泛的生理特性。了解这种新出现的微生物能力的控制因素,可能为自然和工程水系统中的氮去除或污染物修复提供新途径。
NO歧化生成N和O是一种由假定的NO歧化酶(Nod)催化的新过程。迄今为止,已知只有两种细菌,即厌氧甲烷氧化菌“食烷甲基奇异菌(暂未培养)”和烷烃氧化γ-变形菌HdN1含有nod基因。在这项研究中,我们报告了能够检测和量化环境样品中多种nod基因的有效分子工具。在受污染的含水层以及废水处理系统中发现了令人惊讶的高多样性和丰度的nod基因。这一证据表明,NO歧化在自然和人造环境中可能是一种比目前所认为的更为广泛的生理特性。这里介绍的分子工具将有助于未来对这些神秘微生物的进一步研究。