Suppr超能文献

用于再生医学的可植入传感器

Implantable Sensors for Regenerative Medicine.

作者信息

Klosterhoff Brett S, Tsang Melissa, She Didi, Ong Keat Ghee, Allen Mark G, Willett Nick J, Guldberg Robert E

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332.

出版信息

J Biomech Eng. 2017 Feb 1;139(2):0210091-02100911. doi: 10.1115/1.4035436.

Abstract

The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields.

摘要

许多在体外显示出前景的组织工程/再生医学(TE/RM)疗法,在更复杂且与临床相关的临床前体内模型中实施时,由于疗效降低和不一致而被推迟或放弃。由于在纵向测量体内关键环境线索进展方面存在技术限制,在植入再生疗法后确定治疗效果受损的机制原因具有挑战性。能够在原位实时测量再生微环境中包括应变、压力、pH值、温度、氧张力和特定生物标志物等感兴趣的环境参数,将显著增加组织工程师可用于监测和评估功能愈合机制或缺乏愈合机制的信息。微机电系统(MEMS)所采用的材料和制造技术的不断进步以及无源磁弹性传感器平台的独特物理特性,为将小型、灵活、低功耗传感器植入临床前体内模型并在整个愈合过程中定量测量环境线索创造了机会。在这篇观点文章中,我们讨论了TE/RM研究中纵向测量的必要性、MEMS和磁弹性可植入传感器方法的技术进展、可植入传感器在使临床前TE/RM研究受益方面的潜在应用,以及这两个重要领域交叉点上合作努力的未来方向。

相似文献

1
Implantable Sensors for Regenerative Medicine.用于再生医学的可植入传感器
J Biomech Eng. 2017 Feb 1;139(2):0210091-02100911. doi: 10.1115/1.4035436.
4
Parylene-based encapsulated fluid MEMS sensors.基于聚对二甲苯的封装流体微机电系统传感器。
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1039-41. doi: 10.1109/IEMBS.2009.5334826.

引用本文的文献

7
Wireless Technologies for Implantable Devices.植入式设备的无线技术。
Sensors (Basel). 2020 Aug 16;20(16):4604. doi: 10.3390/s20164604.
8
Impact of industry 4.0 to create advancements in orthopaedics.工业4.0对骨科领域取得进展的影响。
J Clin Orthop Trauma. 2020 Jul;11(Suppl 4):S491-S499. doi: 10.1016/j.jcot.2020.03.006. Epub 2020 Mar 18.

本文引用的文献

9
Mechanisms of Vessel Pruning and Regression.血管修剪和退化的机制。
Dev Cell. 2015 Jul 6;34(1):5-17. doi: 10.1016/j.devcel.2015.06.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验