Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States.
Acc Chem Res. 2016 Dec 20;49(12):2705-2712. doi: 10.1021/acs.accounts.6b00356. Epub 2016 Nov 7.
In complex systems, it is often the case that the region of interest forms only one part of a much larger system. The idea of joining two different quantum simulations-a high level calculation on the active region of interest, and a low level calculation on its environment-formally defines a quantum embedding. While any combination of techniques constitutes an embedding, several rigorous formalisms have emerged that provide for exact feedback between the embedded system and its environment. These three formulations: density functional embedding, Green's function embedding, and density matrix embedding, respectively, use the single-particle density, single-particle Green's function, and single-particle density matrix as the quantum variables of interest. Many excellent reviews exist covering these methods individually. However, a unified presentation of the different formalisms is so far lacking. Indeed, the various languages commonly used, functional equations for density functional embedding, diagrammatics for Green's function embedding, and entanglement arguments for density matrix embedding, make the three formulations appear vastly different. In this Account, we introduce the basic equations of all three formulations in such a way as to highlight their many common intellectual strands. While we focus primarily on a straightforward theoretical perspective, we also give a brief overview of recent applications and possible future developments. The first section starts with density functional embedding, where we introduce the key embedding potential via the Euler equation. We then discuss recent work concerning the treatment of the nonadditive kinetic potential, before describing mean-field density functional embedding and wave function in density functional embedding. We finish the section with extensions to time-dependence and excited states. The second section is devoted to Green's function embedding. Here, we use the Dyson equation to obtain equations that parallel as closely as possible the density functional embedding equations, with the hybridization playing the role of the embedding potential. Embedding a high-level self-energy within a low-level self-energy is treated analogously to wave function in density functional embedding. The numerical computation of the high-level self-energy allows us to briefly introduce the bath representation in the quantum impurity problem. We then consider translationally invariant systems to bring in the important dynamical mean-field theory. Recent developments to incorporate screening and long-range interactions are discussed. The third section concerns density matrix embedding. Here, we first highlight some mathematical complications associated with a simple Euler equation derivation, arising from the open nature of fragments. This motivates the density matrix embedding theory, where we use the Schmidt decomposition to represent the entanglement through bath orbitals. The resulting impurity plus bath formulation resembles that of dynamical mean-field theory. We discuss the numerical self-consistency associated with using a high-level correlated wave function with a mean-field low-level treatment, and connect the resulting numerical inversion to that used in density functional embedding. We finish with perspectives on the future of all three methods.
在复杂系统中,感兴趣的区域通常只形成更大系统的一部分。将两种不同的量子模拟——对感兴趣的活跃区域的高级计算和对其环境的低级计算——结合起来的想法正式定义了量子嵌入。虽然任何技术组合都构成了一种嵌入,但已经出现了几种严格的形式主义方法,可以在嵌入系统与其环境之间提供精确的反馈。这三种表述方式:密度泛函嵌入、格林函数嵌入和密度矩阵嵌入,分别使用单粒子密度、单粒子格林函数和单粒子密度矩阵作为感兴趣的量子变量。许多优秀的综述文章分别涵盖了这些方法。然而,到目前为止,还缺乏对不同形式主义的统一表述。事实上,由于常用的各种语言、密度泛函嵌入的泛函方程、格林函数嵌入的图表以及密度矩阵嵌入的纠缠论点,这三种表述方式看起来大不相同。在本账户中,我们以一种突出它们许多共同的知识线索的方式介绍了所有三种表述方式的基本方程。虽然我们主要关注直接的理论视角,但我们也简要概述了最近的应用和可能的未来发展。第一节从密度泛函嵌入开始,我们通过欧拉方程引入关键的嵌入势。然后,我们讨论了最近关于处理非加性动能势的工作,然后描述了平均场密度泛函嵌入和密度泛函嵌入中的波函数。我们以时间相关性和激发态的扩展结束这一节。第二节专门讨论格林函数嵌入。在这里,我们使用 Dyson 方程得到与密度泛函嵌入方程尽可能平行的方程,其中杂化起到嵌入势的作用。在低水平自能中嵌入高水平自能类似于密度泛函嵌入中的波函数。高水平自能的数值计算使我们能够简要地引入量子杂质问题中的浴表示。然后,我们考虑平移不变系统,引入重要的动力学平均场理论。讨论了最近发展以纳入屏蔽和长程相互作用。第三节涉及密度矩阵嵌入。在这里,我们首先强调与简单的欧拉方程推导相关的一些数学复杂性,这些复杂性源于片段的开放性。这激发了密度矩阵嵌入理论,我们使用 Schmidt 分解通过浴轨道表示纠缠。由此产生的杂质加浴公式类似于动力学平均场理论。我们讨论了使用高水平相关波函数和低水平平均场处理的数值自洽性,并将得到的数值反演与密度泛函嵌入中的反演联系起来。最后,我们对所有三种方法的未来进行了展望。