Shi Benjamin X, Rosen Andrew S, Schäfer Tobias, Grüneis Andreas, Kapil Venkat, Zen Andrea, Michaelides Angelos
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
Initiative for Computational Catalysis, Flatiron Institute, New York, NY, USA.
Nat Chem. 2025 Aug 13. doi: 10.1038/s41557-025-01884-y.
Quantum-mechanical simulations can offer atomic-level insights into chemical processes on surfaces that are crucial to advancing applications in heterogeneous catalysis, energy storage and greenhouse gas sequestration. Unfortunately, achieving the accuracy needed for reliable predictions has proven challenging. Density functional theory, widely used for its efficiency, can be inconsistent, necessitating accurate methods from correlated wavefunction theory. But high computational demands and substantial user intervention have traditionally made correlated wavefunction theory impractical to carry out for surfaces. Here we present an automated framework that leverages multilevel embedding approaches to apply correlated wavefunction theory to the surfaces of ionic materials with computational costs approaching those of density functional theory. With this framework, we reproduce experimental adsorption enthalpies for a diverse set of 19 adsorbate-surface systems. We further resolve debates on the adsorption configuration of several systems, while offering benchmarks to assess density functional theory. This framework is open source, facilitating the routine application of correlated wavefunction theory to complex problems involving the surfaces of ionic materials.
量子力学模拟能够提供关于表面化学过程的原子级见解,这些见解对于推进多相催化、能量存储和温室气体封存等应用至关重要。不幸的是,要实现可靠预测所需的精度已被证明具有挑战性。密度泛函理论因其效率而被广泛使用,但可能存在不一致性,因此需要相关波函数理论中的精确方法。然而,传统上高计算需求和大量用户干预使得相关波函数理论在处理表面问题时不切实际。在此,我们提出了一个自动化框架,该框架利用多级嵌入方法将相关波函数理论应用于离子材料表面,其计算成本接近密度泛函理论。借助这个框架,我们重现了19种不同吸附质 - 表面系统的实验吸附焓。我们进一步解决了几个系统吸附构型的争议,同时提供了评估密度泛函理论的基准。这个框架是开源的,便于将相关波函数理论常规应用于涉及离子材料表面的复杂问题。