Suppr超能文献

大数据时代循证医学与精准医学的协调:挑战与机遇

Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities.

作者信息

Beckmann Jacques S, Lew Daniel

机构信息

Clinical Bioinformatics, SIB Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland.

出版信息

Genome Med. 2016 Dec 19;8(1):134. doi: 10.1186/s13073-016-0388-7.

Abstract

This era of groundbreaking scientific developments in high-resolution, high-throughput technologies is allowing the cost-effective collection and analysis of huge, disparate datasets on individual health. Proper data mining and translation of the vast datasets into clinically actionable knowledge will require the application of clinical bioinformatics. These developments have triggered multiple national initiatives in precision medicine-a data-driven approach centering on the individual. However, clinical implementation of precision medicine poses numerous challenges. Foremost, precision medicine needs to be contrasted with the powerful and widely used practice of evidence-based medicine, which is informed by meta-analyses or group-centered studies from which mean recommendations are derived. This "one size fits all" approach can provide inadequate solutions for outliers. Such outliers, which are far from an oddity as all of us fall into this category for some traits, can be better managed using precision medicine. Here, we argue that it is necessary and possible to bridge between precision medicine and evidence-based medicine. This will require worldwide and responsible data sharing, as well as regularly updated training programs. We also discuss the challenges and opportunities for achieving clinical utility in precision medicine. We project that, through collection, analyses and sharing of standardized medically relevant data globally, evidence-based precision medicine will shift progressively from therapy to prevention, thus leading eventually to improved, clinician-to-patient communication, citizen-centered healthcare and sustained well-being.

摘要

在高分辨率、高通量技术取得突破性科学进展的这个时代,人们能够以经济高效的方式收集和分析关于个人健康的海量、各异的数据集。要对这些庞大的数据集进行恰当的数据挖掘,并将其转化为临床可应用的知识,就需要应用临床生物信息学。这些进展引发了多个国家在精准医学方面的倡议,精准医学是以个人为中心的数据驱动方法。然而,精准医学的临床应用面临诸多挑战。首先,精准医学需要与强大且广泛应用的循证医学实践形成对比,循证医学是基于荟萃分析或以群体为中心的研究得出平均推荐意见。这种“一刀切”的方法可能无法为异常情况提供充分的解决方案。而这些异常情况并非罕见,因为我们所有人在某些特征上都属于这一类别,使用精准医学可以更好地应对这些情况。在此,我们认为在精准医学和循证医学之间架起桥梁是必要且可行的。这将需要全球范围内负责任的数据共享以及定期更新的培训项目。我们还讨论了在精准医学中实现临床应用的挑战和机遇。我们预计,通过在全球范围内收集、分析和共享标准化的医学相关数据,循证精准医学将逐步从治疗转向预防,最终实现改善医患沟通、以公民为中心的医疗保健以及持续的健康福祉。

相似文献

5
Big Data Analytics for Genomic Medicine.基因组医学中的大数据分析
Int J Mol Sci. 2017 Feb 15;18(2):412. doi: 10.3390/ijms18020412.
10
Evidence-based medicine and big genomic data.循证医学与大基因组数据。
Hum Mol Genet. 2018 May 1;27(R1):R2-R7. doi: 10.1093/hmg/ddy065.

引用本文的文献

1
Precision Medicine for Obesity Treatment.肥胖治疗的精准医学
J Endocr Soc. 2025 Jun 5;9(9):bvaf102. doi: 10.1210/jendso/bvaf102. eCollection 2025 Sep.
9
Big data in breast cancer: Towards precision treatment.乳腺癌中的大数据:迈向精准治疗。
Digit Health. 2024 Nov 3;10:20552076241293695. doi: 10.1177/20552076241293695. eCollection 2024 Jan-Dec.

本文引用的文献

1
Present and future of personalized medicine in CLL.慢性淋巴细胞白血病个性化医疗的现状与未来。
Best Pract Res Clin Haematol. 2016 Mar;29(1):100-110. doi: 10.1016/j.beha.2016.08.009. Epub 2016 Aug 12.
3
Participation: Power to the patients.参与:赋予患者权力。
Nature. 2016 Sep 8;537(7619):S66-8. doi: 10.1038/537S66a.
7
A Landscape of Pharmacogenomic Interactions in Cancer.癌症中的药物基因组学相互作用全景
Cell. 2016 Jul 28;166(3):740-754. doi: 10.1016/j.cell.2016.06.017. Epub 2016 Jul 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验