Suppr超能文献

TAEL:一种经过斑马鱼优化的光遗传学基因表达系统,具有精细的时空控制。

TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.

作者信息

Reade Anna, Motta-Mena Laura B, Gardner Kevin H, Stainier Didier Y, Weiner Orion D, Woo Stephanie

机构信息

CVRI & Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.

Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY 10031, USA.

出版信息

Development. 2017 Jan 15;144(2):345-355. doi: 10.1242/dev.139238. Epub 2016 Dec 19.

Abstract

Here, we describe an optogenetic gene expression system optimized for use in zebrafish. This system overcomes the limitations of current inducible expression systems by enabling robust spatial and temporal regulation of gene expression in living organisms. Because existing optogenetic systems show toxicity in zebrafish, we re-engineered the blue-light-activated EL222 system for minimal toxicity while exhibiting a large range of induction, fine spatial precision and rapid kinetics. We validate several strategies to spatially restrict illumination and thus gene induction with our new TAEL (TA4-EL222) system. As a functional example, we show that TAEL is able to induce ectopic endodermal cells in the presumptive ectoderm via targeted sox32 induction. We also demonstrate that TAEL can be used to resolve multiple roles of Nodal signaling at different stages of embryonic development. Finally, we show how inducible gene editing can be achieved by combining the TAEL and CRISPR/Cas9 systems. This toolkit should be a broadly useful resource for the fish community.

摘要

在此,我们描述了一种针对斑马鱼优化的光遗传学基因表达系统。该系统通过在活生物体中实现对基因表达的强大时空调控,克服了当前诱导型表达系统的局限性。由于现有的光遗传学系统在斑马鱼中显示出毒性,我们对蓝光激活的EL222系统进行了重新设计,以使其毒性最小,同时具有广泛的诱导范围、精细的空间精度和快速的动力学。我们用新的TAEL(TA4 - EL222)系统验证了几种在空间上限制光照从而限制基因诱导的策略。作为一个功能示例,我们表明TAEL能够通过靶向诱导sox32在预定外胚层中诱导异位内胚层细胞。我们还证明TAEL可用于解析胚胎发育不同阶段中Nodal信号的多种作用。最后,我们展示了如何通过结合TAEL和CRISPR/Cas9系统实现诱导型基因编辑。这个工具包应该是鱼类研究群体广泛有用的资源。

相似文献

1
TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.
Development. 2017 Jan 15;144(2):345-355. doi: 10.1242/dev.139238. Epub 2016 Dec 19.
2
TAEL 2.0: An Improved Optogenetic Expression System for Zebrafish.
Zebrafish. 2021 Feb;18(1):20-28. doi: 10.1089/zeb.2020.1951. Epub 2021 Feb 8.
4
Photoactivatable CRISPR-Cas9 for optogenetic genome editing.
Nat Biotechnol. 2015 Jul;33(7):755-60. doi: 10.1038/nbt.3245. Epub 2015 Jun 15.
5
Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.
G3 (Bethesda). 2016 Aug 9;6(8):2517-21. doi: 10.1534/g3.116.031914.
6
Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
Methods Cell Biol. 2016;135:3-17. doi: 10.1016/bs.mcb.2016.04.018. Epub 2016 May 30.
7
Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana.
Dev Growth Differ. 2009 Dec;51(9):769-75. doi: 10.1111/j.1440-169X.2009.01135.x. Epub 2009 Oct 15.
8
An optogenetic gene expression system with rapid activation and deactivation kinetics.
Nat Chem Biol. 2014 Mar;10(3):196-202. doi: 10.1038/nchembio.1430. Epub 2014 Jan 12.
9
Clonal analysis of gene loss of function and tissue-specific gene deletion in zebrafish via CRISPR/Cas9 technology.
Methods Cell Biol. 2016;135:171-88. doi: 10.1016/bs.mcb.2016.03.006. Epub 2016 Jun 2.

引用本文的文献

1
A Pipeline for Screening Small Molecule-Enhanced Protein Stability in A Bacterial Orphan Receptor.
bioRxiv. 2025 Jul 5:2025.07.03.663076. doi: 10.1101/2025.07.03.663076.
4
infection study models and prospectives for probing the microbe-host interface.
J Bacteriol. 2025 Mar 20;207(3):e0040724. doi: 10.1128/jb.00407-24. Epub 2025 Feb 6.
5
Optogenetic Control of Phosphate-Responsive Genes Using Single-Component Fusion Proteins in .
ACS Synth Biol. 2024 Dec 20;13(12):4085-4098. doi: 10.1021/acssynbio.4c00529. Epub 2024 Nov 12.
6
Optogenetic control of phosphate-responsive genes using single component fusion proteins in .
bioRxiv. 2024 Oct 29:2024.08.02.605841. doi: 10.1101/2024.08.02.605841.
7
Optogenetic Signaling Activation in Zebrafish Embryos.
J Vis Exp. 2023 Oct 27(200). doi: 10.3791/65733.
10
Spatial and temporal control of expression with light-gated LOV-LexA.
G3 (Bethesda). 2022 Sep 30;12(10). doi: 10.1093/g3journal/jkac178.

本文引用的文献

1
Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
Dev Cell. 2016 Jan 11;36(1):117-126. doi: 10.1016/j.devcel.2015.12.011.
2
Photoactivatable CRISPR-Cas9 for optogenetic genome editing.
Nat Biotechnol. 2015 Jul;33(7):755-60. doi: 10.1038/nbt.3245. Epub 2015 Jun 15.
3
A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish.
Dev Cell. 2015 Mar 23;32(6):756-64. doi: 10.1016/j.devcel.2015.01.032. Epub 2015 Mar 5.
4
A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.
Nat Chem Biol. 2015 Mar;11(3):198-200. doi: 10.1038/nchembio.1753. Epub 2015 Feb 9.
5
Illuminating cell signalling with optogenetic tools.
Nat Rev Mol Cell Biol. 2014 Aug;15(8):551-8. doi: 10.1038/nrm3837. Epub 2014 Jul 16.
6
CRISPR-Cas systems for editing, regulating and targeting genomes.
Nat Biotechnol. 2014 Apr;32(4):347-55. doi: 10.1038/nbt.2842. Epub 2014 Mar 2.
7
An optogenetic gene expression system with rapid activation and deactivation kinetics.
Nat Chem Biol. 2014 Mar;10(3):196-202. doi: 10.1038/nchembio.1430. Epub 2014 Jan 12.
8
Mutations affecting pigmentation and shape of the adult zebrafish.
Dev Genes Evol. 1996 Nov;206(4):260-76. doi: 10.1007/s004270050051.
9
Blue light-induced dimerization of a bacterial LOV-HTH DNA-binding protein.
Biochemistry. 2013 Sep 24;52(38):6653-61. doi: 10.1021/bi401040m. Epub 2013 Sep 12.
10
Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13904-9. doi: 10.1073/pnas.1308335110. Epub 2013 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验