Suppr超能文献

用于编辑、调控和靶向基因组的CRISPR-Cas系统。

CRISPR-Cas systems for editing, regulating and targeting genomes.

作者信息

Sander Jeffry D, Joung J Keith

机构信息

1] Molecular Pathology Unit, Center for Computational and Integrative Biology, Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA. [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Nat Biotechnol. 2014 Apr;32(4):347-55. doi: 10.1038/nbt.2842. Epub 2014 Mar 2.

Abstract

Targeted genome editing using engineered nucleases has rapidly gone from being a niche technology to a mainstream method used by many biological researchers. This widespread adoption has been largely fueled by the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology, an important new approach for generating RNA-guided nucleases, such as Cas9, with customizable specificities. Genome editing mediated by these nucleases has been used to rapidly, easily and efficiently modify endogenous genes in a wide variety of biomedically important cell types and in organisms that have traditionally been challenging to manipulate genetically. Furthermore, a modified version of the CRISPR-Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression or label specific genomic loci in living cells. Although the genome-wide specificities of CRISPR-Cas9 systems remain to be fully defined, the power of these systems to perform targeted, highly efficient alterations of genome sequence and gene expression will undoubtedly transform biological research and spur the development of novel molecular therapeutics for human disease.

摘要

使用工程核酸酶进行靶向基因组编辑已迅速从一项小众技术发展成为许多生物学研究人员使用的主流方法。这种广泛采用在很大程度上得益于成簇规律间隔短回文重复序列(CRISPR)技术的出现,这是一种用于生成具有可定制特异性的RNA引导核酸酶(如Cas9)的重要新方法。由这些核酸酶介导的基因组编辑已被用于快速、轻松且高效地修饰多种具有生物医学重要性的细胞类型以及传统上在基因操作方面具有挑战性的生物体中的内源基因。此外,CRISPR-Cas9系统的一个改良版本已被开发出来,用于招募能够调节内源基因表达或标记活细胞中特定基因组位点的异源结构域。尽管CRISPR-Cas9系统的全基因组特异性仍有待完全确定,但这些系统进行靶向、高效改变基因组序列和基因表达的能力无疑将改变生物学研究并推动针对人类疾病的新型分子疗法的发展。

相似文献

1
CRISPR-Cas systems for editing, regulating and targeting genomes.
Nat Biotechnol. 2014 Apr;32(4):347-55. doi: 10.1038/nbt.2842. Epub 2014 Mar 2.
2
Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
World J Microbiol Biotechnol. 2018 Sep 29;34(10):153. doi: 10.1007/s11274-018-2537-1.
3
Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives.
Plant Biotechnol J. 2014 Oct;12(8):1006-14. doi: 10.1111/pbi.12256.
6
How specific is CRISPR/Cas9 really?
Curr Opin Chem Biol. 2015 Dec;29:72-8. doi: 10.1016/j.cbpa.2015.10.001. Epub 2015 Oct 24.
7
Genome modification by CRISPR/Cas9.
FEBS J. 2014 Dec;281(23):5186-93. doi: 10.1111/febs.13110. Epub 2014 Nov 7.
8
Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research.
Curr Opin Plant Biol. 2016 Apr;30:70-7. doi: 10.1016/j.pbi.2016.01.007. Epub 2016 Feb 18.
9
Research progress of genome editing and derivative technologies in plants.
Yi Chuan. 2015 Oct;37(10):953-73. doi: 10.16288/j.yczz.15-156.
10
Harnessing CRISPR-Cas systems for bacterial genome editing.
Trends Microbiol. 2015 Apr;23(4):225-32. doi: 10.1016/j.tim.2015.01.008. Epub 2015 Feb 17.

引用本文的文献

2
CRISPR/Cas-Mediated Optimization of Soybean Shoot Architecture for Enhanced Yield.
Int J Mol Sci. 2025 Aug 16;26(16):7925. doi: 10.3390/ijms26167925.
4
A single donor cassette enables site-specific knock-in at either the αAmy3 or αAmy8 locus in rice cells via CRISPR/Cas9.
Appl Microbiol Biotechnol. 2025 Aug 21;109(1):190. doi: 10.1007/s00253-025-13549-4.
5
Know your enemy: understanding mosquito biology to advance malaria elimination in Africa.
Parasitol Res. 2025 Aug 18;124(8):93. doi: 10.1007/s00436-025-08534-9.
6
Efficient Genome Editing Using the T2A-Coupled Co-Expression of Two ZFN Monomers.
Int J Mol Sci. 2025 Aug 6;26(15):7602. doi: 10.3390/ijms26157602.
7
Kinetic basis for Cas12a off-target discrimination.
BMB Rep. 2025 Aug;58(8):364-368. doi: 10.5483/BMBRep.2025-0073.
8
CRISPR-GPT for agentic automation of gene-editing experiments.
Nat Biomed Eng. 2025 Jul 30. doi: 10.1038/s41551-025-01463-z.
9
Mechanisms of Immune Evasion in HIV-1: The Role of Virus-Host Protein Interactions.
Curr Issues Mol Biol. 2025 May 16;47(5):367. doi: 10.3390/cimb47050367.
10
Off-target interactions in the CRISPR-Cas9 Machinery: mechanisms and outcomes.
Biochem Biophys Rep. 2025 Jul 5;43:102134. doi: 10.1016/j.bbrep.2025.102134. eCollection 2025 Sep.

本文引用的文献

1
Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
Nat Biotechnol. 2014 Mar;32(3):267-73. doi: 10.1038/nbt.2800. Epub 2013 Dec 23.
2
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
Nat Biotechnol. 2014 Mar;32(3):279-284. doi: 10.1038/nbt.2808. Epub 2014 Jan 26.
4
Effective gene targeting in rabbits using RNA-guided Cas9 nucleases.
J Mol Cell Biol. 2014 Feb;6(1):97-9. doi: 10.1093/jmcb/mjt047. Epub 2014 Jan 8.
5
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system.
Cell. 2013 Dec 19;155(7):1479-91. doi: 10.1016/j.cell.2013.12.001.
6
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12.
7
Genetic screens in human cells using the CRISPR-Cas9 system.
Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.
8
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
Genome Res. 2014 Jan;24(1):132-41. doi: 10.1101/gr.162339.113. Epub 2013 Nov 19.
9
The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori.
Cell Res. 2013 Dec;23(12):1414-6. doi: 10.1038/cr.2013.146. Epub 2013 Oct 29.
10
Genome engineering using the CRISPR-Cas9 system.
Nat Protoc. 2013 Nov;8(11):2281-2308. doi: 10.1038/nprot.2013.143. Epub 2013 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验