Korea Institute of Machinery and Materials, Daegu, South Korea.
The University of Electro Communications, Tokyo, Japan.
Int J Med Robot. 2017 Dec;13(4). doi: 10.1002/rcs.1793. Epub 2016 Dec 20.
Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system.
In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed.
In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model.
We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment.
高强度聚焦超声(HIFU)是一种有前途的肿瘤治疗技术,但当前的 HIFU 系统仍然面临移动腹部目标的挑战。特别是呼吸引起的器官运动可能会降低治疗效率,并对治疗结果产生负面影响。在这项研究中,我们提出了:(1)一种将超声(US)图像基于视觉伺服整合到 HIFU 系统中的方法;(2)使用所开发系统获得的实验结果。
在视觉伺服系统中,通过双平面 US 成像监测目标运动,并通过与术前 3D 模型的配准进行实时跟踪(40 Hz)。在每个 US 帧中计算目标与当前 HIFU 焦点位置之间的距离,并通过三轴机器人进行物理补偿。由于同时进行 HIFU 照射会干扰 US 目标成像,因此构建了一种复杂的交错策略。
在实验中,使用线性执行器和肾形仿体模型在水箱中模拟呼吸引起的器官运动。将运动补偿应用于移动仿体模型。根据实验结果,视觉伺服的平均运动补偿精度为 1.7 毫米(均方根)。此外,该集成系统可以在呼吸移动仿体模型的期望位置形成球形 HIFU 消融病灶。
我们已经证明了我们的基于 US 图像的视觉伺服技术在用于移动目标治疗的 HIFU 系统中的可行性。