Mogollon Catherin Marin, van Pul Fiona J A, Imai Takashi, Ramesar Jai, Chevalley-Maurel Séverine, de Roo Guido M, Veld Sabrina A J, Kroeze Hans, Franke-Fayard Blandine M D, Janse Chris J, Khan Shahid M
Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
Department of Hematology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
PLoS One. 2016 Dec 20;11(12):e0168362. doi: 10.1371/journal.pone.0168362. eCollection 2016.
The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters.
CRISPR/Cas9系统是一种强大的基因组编辑技术,广泛应用于多种生物体,包括最近用于人类疟原虫恶性疟原虫。在此,我们报告了对CRISPR/Cas9转染构建体和选择方案的进一步改进,以更快速地修饰恶性疟原虫基因组,并在不包含药物选择标记基因的情况下将转基因引入寄生虫基因组。该方法用于在三种不同疟原虫基因(钙调蛋白、甘油醛-3-磷酸脱氢酶和热休克蛋白70)的启动子控制下,将编码绿色荧光蛋白(GFP)的基因稳定整合到恶性疟原虫基因组中。选择这些基因是因为它们在血液阶段高度转录。我们表明,本研究中产生的三种报告寄生虫系(GFP@cam、GFP@gapdh和GFP@hsp70)在体外血液阶段的生长动力学和药物敏感性谱与亲本恶性疟原虫(NF54)野生型系相当。通过对GFP荧光强度的流式细胞术分析表明,三种报告系的无性和有性血液阶段均表达GFP荧光,其中GFP@hsp70在裂殖体阶段具有最高的荧光强度。改进后的CRISPR/Cas9构建体/方案将有助于快速产生转基因和修饰的恶性疟原虫寄生虫,包括那些在不同(阶段特异性)启动子下表达不同报告蛋白的寄生虫。