Department of Chemistry and Chemical Engineering, Chalmers University of Technology , Gothenburg SE-412 96, Sweden.
National Centre for Imaging Mass Spectrometry, Chalmers University of Technology and University of Gothenburg , Gothenburg SE-412 96, Sweden.
ACS Nano. 2017 Apr 25;11(4):3446-3455. doi: 10.1021/acsnano.6b07233. Epub 2016 Dec 27.
We report an approach to spatially resolve the content across nanometer neuroendocrine vesicles in nerve-like cells by correlating super high-resolution mass spectrometry imaging, NanoSIMS, with transmission electron microscopy (TEM). Furthermore, intracellular electrochemical cytometry at nanotip electrodes is used to count the number of molecules in individual vesicles to compare to imaged amounts in vesicles. Correlation between the NanoSIMS and TEM provides nanometer resolution of the inner structure of these organelles. Moreover, correlation with electrochemical methods provides a means to quantify and relate vesicle neurotransmitter content and release, which is used to explain the slow transfer of dopamine between vesicular compartments. These nanoanalytical tools reveal that dopamine loading/unloading between vesicular compartments, dense core and halo solution, is a kinetically limited process. The combination of NanoSIMS and TEM has been used to show the distribution profile of newly synthesized dopamine across individual vesicles. Our findings suggest that the vesicle inner morphology might regulate the neurotransmitter release event during open and closed exocytosis from dense core vesicles with hours of equilibrium needed to move significant amounts of catecholamine from the protein dense core despite its nanometer size.
我们报告了一种通过将超分辨率质谱成像、NanoSIMS 与透射电子显微镜 (TEM) 相关联,在神经样细胞中对纳米级神经内分泌囊泡的内容物进行空间分辨的方法。此外,通过纳米尖端电极进行的细胞内电化学细胞计数用于计算单个囊泡中的分子数量,并与囊泡中的成像数量进行比较。NanoSIMS 和 TEM 之间的相关性提供了这些细胞器内部结构的纳米分辨率。此外,与电化学方法的相关性提供了一种定量和关联囊泡神经递质含量和释放的方法,这用于解释多巴胺在囊泡隔室之间的缓慢转移。这些纳米分析工具表明,囊泡隔室、致密核心和晕溶液之间的多巴胺加载/卸载是一个动力学受限的过程。NanoSIMS 和 TEM 的组合已被用于显示新合成的多巴胺在单个囊泡中的分布情况。我们的研究结果表明,尽管致密核心的纳米尺寸,但囊泡内部形态可能会调节致密核心囊泡开放和关闭胞吐过程中的神经递质释放事件,需要数小时的平衡才能将大量儿茶酚胺从蛋白质致密核心中转移。