Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden.
Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden.
Int J Mol Sci. 2021 Dec 23;23(1):160. doi: 10.3390/ijms23010160.
The absolute concentration and the compartmentalization of analytes in cells and organelles are crucial parameters in the development of drugs and drug delivery systems, as well as in the fundamental understanding of many cellular processes. Nanoscale secondary ion mass spectrometry (NanoSIMS) imaging is a powerful technique which allows subcellular localization of chemical species with high spatial and mass resolution, and high sensitivity. In this study, we combined NanoSIMS imaging with spatial oversampling with transmission electron microscopy (TEM) imaging to discern the compartments (dense core and halo) of large dense core vesicles in a model cell line used to study exocytosis, and to localize C dopamine enrichment following 4-6 h of 150 μM C L-3,4-dihydroxyphenylalanine (L-DOPA) incubation. In addition, the absolute concentrations of C dopamine in distinct vesicle domains as well as in entire single vesicles were quantified and validated by comparison to electrochemical data. We found concentrations of 87.5 mM, 16.0 mM and 39.5 mM for the dense core, halo and the whole vesicle, respectively. This approach adds to the potential of using combined TEM and NanoSIMS imaging to perform absolute quantification and directly measure the individual contents of nanometer-scale organelles.
分析物在细胞和细胞器中的绝对浓度和区室化是药物和药物输送系统开发以及许多细胞过程基本理解的关键参数。纳米级二次离子质谱(NanoSIMS)成像技术是一种强大的技术,它可以在亚细胞水平上对具有高空间和质量分辨率以及高灵敏度的化学物质进行定位。在这项研究中,我们将 NanoSIMS 成像与透射电子显微镜(TEM)成像的空间过采样相结合,以区分用于研究胞吐作用的模型细胞系中大型致密核心囊泡的隔室(致密核心和晕轮),并在 4-6 小时 150 μM C L-3,4-二羟基苯丙氨酸(L-DOPA)孵育后定位 C 多巴胺的富集。此外,通过与电化学数据进行比较,对不同囊泡区域以及整个单个囊泡中 C 多巴胺的绝对浓度进行了定量和验证。我们发现致密核心、晕轮和整个囊泡的浓度分别为 87.5 mM、16.0 mM 和 39.5 mM。这种方法增加了使用 TEM 和 NanoSIMS 成像相结合进行绝对定量和直接测量纳米级细胞器个体含量的潜力。