Mufudza Chipo, Erol Hamza
Statistics Department, Cukurova University, 01330 Adana, Turkey.
Comput Math Methods Med. 2016;2016:4083089. doi: 10.1155/2016/4083089. Epub 2016 Nov 23.
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
通过高疾病预测和诊断效率可以实现早期心脏病控制。本文重点探讨基于模型的聚类技术在通过泊松混合回归模型预测和诊断心脏病方面的应用。本文在两个不同类别下讨论泊松混合回归模型的分析与应用:标准混合回归模型和伴随变量混合回归模型。结果表明,由于其贝叶斯信息准则值较低,两成分伴随变量泊松混合回归模型在预测心脏病方面优于标准泊松混合回归模型和普通广义线性泊松回归模型。此外,零膨胀泊松混合回归模型在所有模型中被证明是心脏病预测的最佳模型,因为它既能将个体聚类为高风险或低风险类别,又能在给定聚类的情况下按分量预测患心脏病的概率。由此推断,使用泊松混合回归模型按分量识别主要风险可以有效地进行心脏病预测。