Suppr超能文献

增强用于计数数据的贝叶斯非参数混合模型

Robustifying Bayesian nonparametric mixtures for count data.

作者信息

Canale Antonio, Prünster Igor

机构信息

Department of Economics and Statistics and Collegio Carlo Alberto, University of Torino, Torino, Italy.

Department of Decision Sciences, BIDSA and IGIER, Bocconi University, Milan, Italy.

出版信息

Biometrics. 2017 Mar;73(1):174-184. doi: 10.1111/biom.12538. Epub 2016 Apr 28.

Abstract

Our motivating application stems from surveys of natural populations and is characterized by large spatial heterogeneity in the counts, which makes parametric approaches to modeling local animal abundance too restrictive. We adopt a Bayesian nonparametric approach based on mixture models and innovate with respect to popular Dirichlet process mixture of Poisson kernels by increasing the model flexibility at the level both of the kernel and the nonparametric mixing measure. This allows to derive accurate and robust estimates of the distribution of local animal abundance and of the corresponding clusters. The application and a simulation study for different scenarios yield also some general methodological implications. Adding flexibility solely at the level of the mixing measure does not improve inferences, since its impact is severely limited by the rigidity of the Poisson kernel with considerable consequences in terms of bias. However, once a kernel more flexible than the Poisson is chosen, inferences can be robustified by choosing a prior more general than the Dirichlet process. Therefore, to improve the performance of Bayesian nonparametric mixtures for count data one has to enrich the model simultaneously at both levels, the kernel and the mixing measure.

摘要

我们的激励性应用源于对自然种群的调查,其特点是计数中存在较大的空间异质性,这使得用于模拟当地动物丰度的参数方法过于受限。我们采用基于混合模型的贝叶斯非参数方法,并通过在核函数和非参数混合测度层面提高模型灵活性,对流行的泊松核狄利克雷过程混合模型进行创新。这使得能够得出当地动物丰度分布及相应集群的准确且稳健的估计。针对不同场景的应用和模拟研究也产生了一些一般性的方法学启示。仅在混合测度层面增加灵活性并不能改善推断结果,因为其影响会受到泊松核刚性的严重限制,在偏差方面会产生相当大的后果。然而,一旦选择了比泊松核更灵活的核函数,通过选择比狄利克雷过程更一般的先验分布,推断结果就可以得到稳健性提升。因此,为了提高贝叶斯非参数混合模型在计数数据方面的性能,必须在核函数和混合测度这两个层面同时丰富模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验