Department of Computer Information Systems and Quantitative Methods, Texas State University, San Marcos, TX, USA.
Stat Med. 2013 Jan 30;32(2):267-81. doi: 10.1002/sim.5457. Epub 2012 Jul 16.
In this paper, we investigate the effects of poverty and inequality on the number of HIV-related deaths in 62 New York counties via Bayesian zero-inflated Poisson models that exhibit spatial dependence. We quantify inequality via the Theil index and poverty via the ratios of two Census 2000 variables, the number of people under the poverty line and the number of people for whom poverty status is determined, in each Zip Code Tabulation Area. The purpose of this study was to investigate the effects of inequality and poverty in addition to spatial dependence between neighboring regions on HIV mortality rate, which can lead to improved health resource allocation decisions. In modeling county-specific HIV counts, we propose Bayesian zero-inflated Poisson models whose rates are functions of both covariate and spatial/random effects. To show how the proposed models work, we used three different publicly available data sets: TIGER Shapefiles, Census 2000, and mortality index files. In addition, we introduce parameter estimation issues of Bayesian zero-inflated Poisson models and discuss MCMC method implications.
在本文中,我们通过具有空间依赖性的贝叶斯零膨胀泊松模型,研究了贫困和不平等对 62 个纽约县与 HIV 相关的死亡人数的影响。我们通过泰尔指数来量化不平等,通过每个邮政编码区(Zip Code Tabulation Area)的两个人口普查 2000 变量(贫困人口数量和贫困状况确定的人数)的比例来量化贫困。本研究的目的是研究不平等和贫困以及相邻地区之间的空间依赖性对 HIV 死亡率的影响,这可以导致改善卫生资源分配决策。在对县特定的 HIV 计数进行建模时,我们提出了贝叶斯零膨胀泊松模型,其速率是协变量和空间/随机效应的函数。为了展示所提出的模型如何工作,我们使用了三个不同的公开可用数据集:TIGER 形状文件、人口普查 2000 年和死亡率索引文件。此外,我们介绍了贝叶斯零膨胀泊松模型的参数估计问题,并讨论了 MCMC 方法的含义。