Li Justin, Kohanyi Emma
Cognitive Science Department, Occidental College.
Top Cogn Sci. 2017 Jan;9(1):102-116. doi: 10.1111/tops.12245. Epub 2016 Dec 21.
One challenge to creating realistic cognitive models of memory is the inability to account for the vast common-sense knowledge of human participants. Large computational knowledge bases such as WordNet and DBpedia may offer a solution to this problem but may pose other challenges. This paper explores some of these difficulties through a semantic network spreading activation model of the Deese-Roediger-McDermott false memory task. In three experiments, we show that these knowledge bases only capture a subset of human associations, while irrelevant information introduces noise and makes efficient modeling difficult. We conclude that the contents of these knowledge bases must be augmented and, more important, that the algorithms must be refined and optimized, before large knowledge bases can be widely used for cognitive modeling.
创建逼真的记忆认知模型面临的一个挑战是无法解释人类参与者的大量常识性知识。诸如WordNet和DBpedia之类的大型计算知识库可能为这个问题提供解决方案,但也可能带来其他挑战。本文通过Deese-Roediger-McDermott错误记忆任务的语义网络扩散激活模型探讨了其中的一些困难。在三个实验中,我们表明这些知识库只捕捉到了人类联想的一个子集,而无关信息会引入噪声并使高效建模变得困难。我们得出结论,在大型知识库能够广泛用于认知建模之前,必须扩充这些知识库的内容,更重要的是,必须改进和优化算法。