Department of Materials and Chemical Engineering, ‡Department of Bionano Technology, and §Department of Applied Chemistry, Hanyang University , Ansan, Kyunggido 426-791, Republic of Korea.
ACS Nano. 2017 Jan 24;11(1):347-357. doi: 10.1021/acsnano.6b05914. Epub 2016 Dec 27.
Rational design of efficient and durable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts is critical for rechargeable metal-air batteries. Here, we developed a facile strategy for fabricating three-dimensional phosphorus and sulfur codoped carbon nitride sponges sandwiched with carbon nanocrystals (P,S-CNS). These materials exhibited high surface area and superior ORR and OER bifunctional catalytic activities than those of Pt/C and RuO, respectively, concerning its limiting current density and onset potential. Further, we tested the suitability and durability of P,S-CNS as the oxygen cathode for primary and rechargeable Zn-air batteries. The resulting primary Zn-air battery exhibited a high open-circuit voltage of 1.51 V, a high discharge peak power density of 198 mW cm, a specific capacity of 830 mA h g, and better durability for 210 h after mechanical recharging. An extraordinary small charge-discharge voltage polarization (∼0.80 V at 25 mA cm), superior reversibility, and stability exceeding prolonged charge-discharge cycles have been attained in rechargeable Zn-air batteries with a three-electrode system. The origin of the electrocatalytic activity of P,S-CNS was elucidated by density functional theory analysis for both oxygen reactions. This work stimulates an innovative prospect for the enrichment of rechargeable Zn-air battery viable for commercial applications such as armamentaria, smart electronics, and electric vehicles.
高效且耐用的双功能氧还原反应(ORR)和氧析出反应(OER)电催化剂的合理设计对于可充电金属空气电池至关重要。在这里,我们开发了一种简便的策略,用于制造具有夹在碳纳米晶之间的三维磷和硫共掺杂碳氮化物海绵(P,S-CNS)。与 Pt/C 和 RuO2 相比,这些材料具有更高的比表面积以及更优异的 ORR 和 OER 双功能催化活性,其极限电流密度和起始电位分别更高。此外,我们测试了 P,S-CNS 作为原电池和可充电锌空气电池的氧阴极的适用性和耐久性。所得的原锌空气电池具有 1.51 V 的高开路电压,198 mW cm 的高放电峰值功率密度,830 mA h g 的比容量,以及在机械再充电后 210 h 的更好的耐久性。在具有三电极系统的可充电锌空气电池中,已经实现了非凡的小充放电电压极化(在 25 mA cm 时约为 0.80 V),优异的可逆性以及超过长时间充放电循环的稳定性。通过对氧反应的密度泛函理论分析,阐明了 P,S-CNS 的电催化活性的起源。这项工作为可充电锌空气电池的发展提供了新的思路,这种电池有望应用于军备、智能电子和电动汽车等商业领域。