Suppr超能文献

一种用于氧还原和氧析出反应的无金属双功能电催化剂。

A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions.

机构信息

Center of Advanced Science and Engineering for Carbon (Case4carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.

Department of Materials Science and Engineering, Department of Chemistry, University of North Texas, Denton, Texas 76203, USA.

出版信息

Nat Nanotechnol. 2015 May;10(5):444-52. doi: 10.1038/nnano.2015.48. Epub 2015 Apr 6.

Abstract

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are traditionally carried out with noble metals (such as Pt) and metal oxides (such as RuO₂ and MnO₂) as catalysts, respectively. However, these metal-based catalysts often suffer from multiple disadvantages, including high cost, low selectivity, poor stability and detrimental environmental effects. Here, we describe a mesoporous carbon foam co-doped with nitrogen and phosphorus that has a large surface area of ∼1,663 m(2) g(-1) and good electrocatalytic properties for both ORR and OER. This material was fabricated using a scalable, one-step process involving the pyrolysis of a polyaniline aerogel synthesized in the presence of phytic acid. We then tested the suitability of this N,P-doped carbon foam as an air electrode for primary and rechargeable Zn-air batteries. Primary batteries demonstrated an open-circuit potential of 1.48 V, a specific capacity of 735 mAh gZn(-1) (corresponding to an energy density of 835 Wh kgZn(-1)), a peak power density of 55 mW cm(-2), and stable operation for 240 h after mechanical recharging. Two-electrode rechargeable batteries could be cycled stably for 180 cycles at 2 mA cm(-2). We also examine the activity of our carbon foam for both OER and ORR independently, in a three-electrode configuration, and discuss ways in which the Zn-air battery can be further improved. Finally, our density functional theory calculations reveal that the N,P co-doping and graphene edge effects are essential for the bifunctional electrocatalytic activity of our material.

摘要

氧还原反应(ORR)和析氧反应(OER)传统上分别使用贵金属(如 Pt)和金属氧化物(如 RuO₂ 和 MnO₂)作为催化剂。然而,这些基于金属的催化剂通常存在多个缺点,包括成本高、选择性低、稳定性差和对环境有害。在这里,我们描述了一种氮磷共掺杂的介孔碳泡沫,其比表面积高达约 1663 m²/g,对 ORR 和 OER 均具有良好的电催化性能。该材料是通过一种可扩展的一步法制备的,涉及在植酸存在下合成的聚苯胺气凝胶的热解。然后,我们测试了这种 N,P 共掺杂碳泡沫作为空气电极用于一次性和可充电锌空气电池的适用性。一次性电池表现出 1.48 V 的开路电位、735 mAh/gZn 的比容量(对应于 835 Wh/kgZn 的能量密度)、55 mW/cm² 的峰值功率密度以及机械再充电后 240 h 的稳定运行。两电极可充电电池可在 2 mA/cm²的条件下稳定循环 180 次。我们还在三电极配置中独立测试了我们的碳泡沫对 OER 和 ORR 的活性,并讨论了进一步提高锌空气电池性能的方法。最后,我们的密度泛函理论计算表明,N,P 共掺杂和石墨烯边缘效应对我们材料的双功能电催化活性至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验