Suppr超能文献

过渡金属二卤族元素原子层用于锂多硫化物电催化。

Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis.

机构信息

Department of Mechanical Engineering, Wayne State University , Detroit, Michigan 48202, United States.

出版信息

J Am Chem Soc. 2017 Jan 11;139(1):171-178. doi: 10.1021/jacs.6b08681. Epub 2016 Dec 21.

Abstract

Lithium-sulfur (Li-S) chemistry is projected to be one of the most promising for next-generation battery technology, and controlling the inherent "polysulfide shuttle" process has become a key research topic in the field. Regulating intermediary polysulfide dissolution by understanding the metamorphosis is essential for realizing stable and high-energy-density Li-S batteries. As of yet, a clear consensus on the basic surface/interfacial properties of the sulfur electrode has not been achieved, although the catalytic phenomenon has been shown to result in enhanced cell stability. Herein, we present evidence that the polysulfide shuttle in a Li-S battery can be stabilized by using electrocatalytic transition metal dichalcogenides (TMDs). Physicochemical transformations at the electrode/electrolyte interface of atomically thin monolayer/few-layer TMDs were elucidated using a combination of spectroscopic and microscopic analysis techniques. Preferential adsorption of higher order liquid polysulfides and subsequent conversion to lower order solid species in the form of dendrite-like structures on the edge sites of TMDs have been demonstrated. Further, detailed electrochemical properties such as activation energy, exchange current density, rate capabilities, cycle life, etc. have been investigated by synthesizing catalytically active nanostructured TMDs in bulk quantity using a liquid-based shear-exfoliation method. Unveiling a specific capacity of 590 mAh g at 0.5 C rate and stability over 350 cycles clearly indicates yet another promising application of two-dimensional TMDs.

摘要

锂硫(Li-S)化学被认为是下一代电池技术中最有前途的一种,控制固有的“多硫化物穿梭”过程已成为该领域的一个关键研究课题。通过了解转化来调节中间多硫化物的溶解对于实现稳定和高能量密度的 Li-S 电池至关重要。尽管催化现象已被证明可以提高电池的稳定性,但到目前为止,对于硫电极的基本表面/界面特性还没有达成明确的共识。在此,我们提出证据表明,使用电催化过渡金属二硫属化物(TMDs)可以稳定 Li-S 电池中的多硫化物穿梭。通过结合光谱和微观分析技术,阐明了原子薄单层/少层 TMDs 电极/电解质界面的物理化学转化。已经证明,在 TMDs 的边缘位点上,较高阶液态多硫化物优先吸附,并随后转化为较低阶固态物质,形成树枝状结构。此外,通过使用基于液体的剪切剥离方法在大量合成催化活性纳米结构 TMDs,进一步研究了详细的电化学性质,如活化能、交换电流密度、倍率性能、循环寿命等。在 0.5 C 速率下展示出 590 mAh g 的比容量和超过 350 个循环的稳定性,清楚地表明了二维 TMDs 的另一个有前途的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验