Suppr超能文献

细菌中第三种胍基核糖开关类别的生化验证

Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria.

作者信息

Sherlock Madeline E, Breaker Ronald R

机构信息

Department of Molecular Biophysics and Biochemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Howard Hughes Medical Institute, Yale University , New Haven, Connecticut 06520, United States.

出版信息

Biochemistry. 2017 Jan 17;56(2):359-363. doi: 10.1021/acs.biochem.6b01271. Epub 2017 Jan 6.

Abstract

Recently, it was determined that representatives of the riboswitch candidates called ykkC and mini-ykkC directly bind free guanidine. These riboswitches regulate the expression of genes whose protein products are implicated in overcoming the toxic effects of this ligand. Thus, the relevant ykkC motif and mini-ykkC motif RNAs have been classified as guanidine-I and guanidine-II riboswitch RNAs, respectively. Moreover, we had previously noted that a third candidate riboswitch class, called ykkC-III, was associated with a distribution of genes similar to those of the other two motifs. Therefore, it was predicted that ykkC-III motif RNAs would sense and respond to the same ligand. In this report, we present biochemical data supporting the hypothesis that ykkC-III RNAs represent a third class of guanidine-sensing RNAs called guanidine-III riboswitches. Members of the guanidine-III riboswitch class bind their ligand with an affinity similar to that observed for members of the other two classes. Notably, there are some sequence similarities between guanidine-II and guanidine-III riboswitches. However, the characteristics of ligand discrimination by guanidine-III RNAs are different from those of the other guanidine-binding motifs, suggesting that the binding pockets have distinct features among the three riboswitch classes.

摘要

最近,已确定名为ykkC和mini-ykkC的核糖开关候选物的代表直接结合游离胍。这些核糖开关调节其蛋白质产物与克服该配体毒性作用有关的基因的表达。因此,相关的ykkC基序和mini-ykkC基序RNA已分别被归类为胍-I和胍-II核糖开关RNA。此外,我们之前曾指出,第三个候选核糖开关类别,称为ykkC-III,与其他两个基序的基因分布相关。因此,据预测ykkC-III基序RNA会感知并响应相同的配体。在本报告中,我们提供了生化数据,支持ykkC-III RNA代表称为胍-III核糖开关的第三类胍感应RNA的假设。胍-III核糖开关类别的成员以与其他两类成员相似的亲和力结合其配体。值得注意的是,胍-II和胍-III核糖开关之间存在一些序列相似性。然而,胍-III RNA的配体识别特征与其他胍结合基序不同,这表明三个核糖开关类别之间的结合口袋具有不同的特征。

相似文献

1
Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2017 Jan 17;56(2):359-363. doi: 10.1021/acs.biochem.6b01271. Epub 2017 Jan 6.
2
Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2017 Jan 17;56(2):352-358. doi: 10.1021/acs.biochem.6b01270. Epub 2017 Jan 6.
3
Variant Bacterial Riboswitches Associated with Nucleotide Hydrolase Genes Sense Nucleoside Diphosphates.
Biochemistry. 2019 Feb 5;58(5):401-410. doi: 10.1021/acs.biochem.8b00617. Epub 2018 Aug 24.
4
Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2020 Dec 15;59(49):4654-4662. doi: 10.1021/acs.biochem.0c00793. Epub 2020 Nov 25.
6
Structural basis for guanidine sensing by the family of riboswitches.
RNA. 2017 Apr;23(4):578-585. doi: 10.1261/rna.060186.116. Epub 2017 Jan 17.
7
An uncommon [K(Mg)] metal ion triad imparts stability and selectivity to the Guanidine-I riboswitch.
RNA. 2021 Oct;27(10):1257-1264. doi: 10.1261/rna.078824.121. Epub 2021 Jul 13.
8
Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class.
Mol Cell. 2017 Jan 19;65(2):220-230. doi: 10.1016/j.molcel.2016.11.019. Epub 2016 Dec 15.
9
Challenges of ligand identification for riboswitch candidates.
RNA Biol. 2011 Jan-Feb;8(1):5-10. doi: 10.4161/rna.8.1.13865. Epub 2011 Jan 1.
10
Structural Basis for Ligand Binding to the Guanidine-I Riboswitch.
Structure. 2017 Jan 3;25(1):195-202. doi: 10.1016/j.str.2016.11.020. Epub 2016 Dec 22.

引用本文的文献

2
From lab reagent to metabolite: the riboswitch ligand guanidine as a relevant compound in bacterial physiology.
J Bacteriol. 2025 Jun 24;207(6):e0007325. doi: 10.1128/jb.00073-25. Epub 2025 May 22.
3
H, C, N and P chemical shift assignment of the first stem-loop Guanidine-II riboswitch from Escherichia coli.
Biomol NMR Assign. 2025 Jun;19(1):53-58. doi: 10.1007/s12104-025-10217-6. Epub 2025 Feb 1.
4
The current riboswitch landscape in .
Microbiology (Reading). 2024 Oct;170(10). doi: 10.1099/mic.0.001508.
5
Cooperative binding of bivalent ligands yields new insights into the guanidine-II riboswitch.
NAR Genom Bioinform. 2024 Sep 25;6(3):lqae132. doi: 10.1093/nargab/lqae132. eCollection 2024 Sep.
6
Atomistic Simulations Reveal Crucial Role of Metal Ions for Ligand Binding in Guanidine-I Riboswitch.
Macromol Rapid Commun. 2024 Dec;45(24):e2400606. doi: 10.1002/marc.202400606. Epub 2024 Sep 3.
7
Growth of complete ammonia oxidizers on guanidine.
Nature. 2024 Sep;633(8030):646-653. doi: 10.1038/s41586-024-07832-z. Epub 2024 Aug 14.
8
Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from .
Microbiol Spectr. 2024 Jul 2;12(7):e0045024. doi: 10.1128/spectrum.00450-24. Epub 2024 May 31.
9
Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain 135.
Biology (Basel). 2024 May 13;13(5):339. doi: 10.3390/biology13050339.
10
Guanidine production by plant homoarginine-6-hydroxylases.
Elife. 2024 Apr 15;12:RP91458. doi: 10.7554/eLife.91458.

本文引用的文献

1
Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2017 Jan 17;56(2):352-358. doi: 10.1021/acs.biochem.6b01270. Epub 2017 Jan 6.
2
Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class.
Mol Cell. 2017 Jan 19;65(2):220-230. doi: 10.1016/j.molcel.2016.11.019. Epub 2016 Dec 15.
3
New classes of self-cleaving ribozymes revealed by comparative genomics analysis.
Nat Chem Biol. 2015 Aug;11(8):606-10. doi: 10.1038/nchembio.1846. Epub 2015 Jul 13.
4
Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.
Mol Cell. 2015 Mar 19;57(6):1110-1123. doi: 10.1016/j.molcel.2015.02.016.
5
The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element.
Mol Cell. 2015 Mar 19;57(6):1099-1109. doi: 10.1016/j.molcel.2015.01.035.
6
An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism.
Mol Cell. 2015 Jan 22;57(2):317-28. doi: 10.1016/j.molcel.2015.01.001.
7
Riboswitches in eubacteria sense the second messenger c-di-AMP.
Nat Chem Biol. 2013 Dec;9(12):834-9. doi: 10.1038/nchembio.1363. Epub 2013 Oct 20.
8
Infernal 1.1: 100-fold faster RNA homology searches.
Bioinformatics. 2013 Nov 15;29(22):2933-5. doi: 10.1093/bioinformatics/btt509. Epub 2013 Sep 4.
9
Widespread genetic switches and toxicity resistance proteins for fluoride.
Science. 2012 Jan 13;335(6065):233-235. doi: 10.1126/science.1215063. Epub 2011 Dec 22.
10
Prospects for riboswitch discovery and analysis.
Mol Cell. 2011 Sep 16;43(6):867-79. doi: 10.1016/j.molcel.2011.08.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验