Suppr超能文献

yybP-ykoY 孤儿核糖开关的锰离子(Mn²⁺)传感机制

Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.

作者信息

Price Ian R, Gaballa Ahmed, Ding Fang, Helmann John D, Ke Ailong

机构信息

Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA.

Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853, USA.

出版信息

Mol Cell. 2015 Mar 19;57(6):1110-1123. doi: 10.1016/j.molcel.2015.02.016.

Abstract

Gene regulation in cis by riboswitches is prevalent in bacteria. The yybP-ykoY riboswitch family is quite widespread, yet its ligand and function remained unknown. Here, we characterize the Lactococcus lactis yybP-ykoY orphan riboswitch as a Mn(2+)-dependent transcription-ON riboswitch, with a ∼30-40 μM affinity for Mn(2+). We further determined its crystal structure at 2.7 Å to elucidate the metal sensing mechanism. The riboswitch resembles a hairpin, with two coaxially stacked helices tethered by a four-way junction and a tertiary docking interface. The Mn(2+)-sensing region, strategically located at the highly conserved docking interface, has two metal binding sites. Whereas one site tolerates the binding of either Mg(2+) or Mn(2+), the other site strongly prefers Mn(2+) due to a direct contact from the N7 of an invariable adenosine. Mutagenesis and a Mn(2+)-free E. coli yybP-ykoY structure further reveal that Mn(2+) binding is coupled with stabilization of the Mn(2+)-sensing region and the aptamer domain.

摘要

核糖开关在顺式作用中对基因的调控在细菌中很普遍。yybP-ykoY核糖开关家族分布广泛,但其配体和功能仍不清楚。在此,我们将乳酸乳球菌的yybP-ykoY孤儿核糖开关鉴定为一种依赖锰离子(Mn(2+))的转录激活核糖开关,对Mn(2+)的亲和力约为30 - 40 μM。我们进一步确定了其2.7 Å分辨率的晶体结构,以阐明金属传感机制。该核糖开关类似一个发夹结构,有两个通过四环连接和三级对接界面同轴堆叠的螺旋。Mn(2+)传感区域位于高度保守的对接界面,有两个金属结合位点。其中一个位点可耐受镁离子(Mg(2+))或Mn(2+)的结合,而另一个位点由于与一个不变腺苷的N7直接接触而强烈偏好Mn(2+)。诱变实验和不含Mn(2+)的大肠杆菌yybP-ykoY结构进一步表明,Mn(2+)的结合与Mn(2+)传感区域和适体结构域的稳定化相关联。

相似文献

1
Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.
Mol Cell. 2015 Mar 19;57(6):1110-1123. doi: 10.1016/j.molcel.2015.02.016.
2
Local-to-global signal transduction at the core of a Mn sensing riboswitch.
Nat Commun. 2019 Sep 20;10(1):4304. doi: 10.1038/s41467-019-12230-5.
3
The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element.
Mol Cell. 2015 Mar 19;57(6):1099-1109. doi: 10.1016/j.molcel.2015.01.035.
4
Convergent Use of Heptacoordination for Cation Selectivity by RNA and Protein Metalloregulators.
Cell Chem Biol. 2018 Aug 16;25(8):962-973.e5. doi: 10.1016/j.chembiol.2018.04.016. Epub 2018 May 24.
5
A Mn-sensing riboswitch activates expression of a Mn2+/Ca2+ ATPase transporter in Streptococcus.
Nucleic Acids Res. 2019 Jul 26;47(13):6885-6899. doi: 10.1093/nar/gkz494.
6
Dynamics of metal binding and mutation in yybP-ykoY riboswitch of .
RSC Adv. 2022 Jun 13;12(27):17337-17349. doi: 10.1039/d2ra02189g. eCollection 2022 Jun 7.
7
A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in at alkaline pH.
J Bacteriol. 2024 Jul 25;206(7):e0016824. doi: 10.1128/jb.00168-24. Epub 2024 Jun 13.
8
TerC Family Proteins Help Prevent Manganese Intoxication.
J Bacteriol. 2020 Jan 2;202(2). doi: 10.1128/JB.00624-19.
9
Challenges of ligand identification for riboswitch candidates.
RNA Biol. 2011 Jan-Feb;8(1):5-10. doi: 10.4161/rna.8.1.13865. Epub 2011 Jan 1.
10
Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
Nature. 2006 Jun 29;441(7097):1167-71. doi: 10.1038/nature04740. Epub 2006 May 21.

引用本文的文献

1
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
3
Programming anti-ribozymes to sense trigger RNAs for modulating gene expression in mammalian cells.
Synth Syst Biotechnol. 2025 Apr 8;10(3):827-834. doi: 10.1016/j.synbio.2025.03.011. eCollection 2025 Sep.
4
The TerC family metal chaperone MeeY enables surfactin export in .
J Bacteriol. 2025 May 22;207(5):e0008825. doi: 10.1128/jb.00088-25. Epub 2025 Apr 16.
5
Metals in Motion: Understanding Labile Metal Pools in Bacteria.
Biochemistry. 2025 Jan 21;64(2):329-345. doi: 10.1021/acs.biochem.4c00726. Epub 2025 Jan 5.
6
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
7
Rho and riboswitch-dependent regulations of mntP gene expression evade manganese and membrane toxicities.
J Biol Chem. 2024 Dec;300(12):107967. doi: 10.1016/j.jbc.2024.107967. Epub 2024 Nov 5.
8
The current riboswitch landscape in .
Microbiology (Reading). 2024 Oct;170(10). doi: 10.1099/mic.0.001508.
9
Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis.
Annu Rev Microbiol. 2024 Nov;78(1):83-102. doi: 10.1146/annurev-micro-041522-091507. Epub 2024 Nov 7.
10
A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration.
Nat Commun. 2024 May 10;15(1):3955. doi: 10.1038/s41467-024-48409-8.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution.
J Am Chem Soc. 2014 Nov 19;136(46):16299-308. doi: 10.1021/ja508478x. Epub 2014 Nov 5.
3
Single-molecule conformational dynamics of a biologically functional hydroxocobalamin riboswitch.
J Am Chem Soc. 2014 Dec 3;136(48):16832-43. doi: 10.1021/ja5076184. Epub 2014 Nov 19.
4
Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis.
J Biol Chem. 2014 Oct 10;289(41):28112-20. doi: 10.1074/jbc.R114.587071. Epub 2014 Aug 26.
5
The mismetallation of enzymes during oxidative stress.
J Biol Chem. 2014 Oct 10;289(41):28121-8. doi: 10.1074/jbc.R114.588814. Epub 2014 Aug 26.
6
Common themes and differences in SAM recognition among SAM riboswitches.
Biochim Biophys Acta. 2014 Oct;1839(10):931-938. doi: 10.1016/j.bbagrm.2014.05.013. Epub 2014 May 23.
7
Themes and variations in riboswitch structure and function.
Biochim Biophys Acta. 2014 Oct;1839(10):908-918. doi: 10.1016/j.bbagrm.2014.02.012. Epub 2014 Feb 28.
8
Mespeus--a database of metal interactions with proteins.
Methods Mol Biol. 2014;1091:333-42. doi: 10.1007/978-1-62703-691-7_23.
9
Changes in transcriptional pausing modify the folding dynamics of the pH-responsive RNA element.
Nucleic Acids Res. 2014 Jan;42(1):622-30. doi: 10.1093/nar/gkt868. Epub 2013 Sep 26.
10
T box RNA decodes both the information content and geometry of tRNA to affect gene expression.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7240-5. doi: 10.1073/pnas.1222214110. Epub 2013 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验