Suppr超能文献

助力下肢外骨骼用于恢复截瘫患者的步态——综述

Powered Lower-Limb Exoskeletons to Restore Gait for Individuals with Paraplegia - a Review.

作者信息

Chang Sarah R, Kobetic Rudi, Audu Musa L, Quinn Roger D, Triolo Ronald J

机构信息

Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center; Department of Biomedical Engineering, Case Western Reserve University.

Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center.

出版信息

Case Orthop J. 2015;12(1):75-80.

Abstract

Individuals with paraplegia due to spinal cord injury rank restoration of walking high on the list of priorities to improving their quality of life. Powered lower-limb exoskeleton technology provides the ability to restore standing up, sitting down, and walking movements for individuals with paraplegia. The robotic exoskeletons generally have electrical motors located at the hip and knee joint centers, which move the wearers' lower limbs through the appropriate range of motion for gait according to control systems using either trajectory control or impedance control. Users of exoskeletons are able to walk at average gait speeds of 0.26 m/s and distances ranging between 121-171 m. However, the achieved gait speeds and distances fall short of those required for full community ambulation (0.8 m/s and at least 230 m), restricting use of the devices to limited community use with stand-by assist or supervised rehabilitation settings. Improvement in the gait speed and distance may be achievable by combining a specially designed powered exoskeleton with neuromuscular stimulation technologies resulting in a hybrid system that fully engages the user and achieves the necessary requirements to ambulate in the community environment with benefits of muscle contraction.

摘要

因脊髓损伤导致截瘫的患者将恢复行走能力列为改善生活质量的首要任务之一。动力下肢外骨骼技术能够帮助截瘫患者恢复站立、坐下和行走的动作。机器人外骨骼通常在髋关节和膝关节中心处设有电动马达,这些马达根据使用轨迹控制或阻抗控制的控制系统,使穿戴者的下肢在适合步态的运动范围内移动。外骨骼的使用者能够以平均0.26米/秒的步态速度行走,行走距离在121 - 171米之间。然而,所达到的步态速度和距离低于完全融入社区行走所需的速度(0.8米/秒)和距离(至少230米),这限制了这些设备仅能在有限的社区环境中使用,如在有备用辅助或监督的康复环境中。通过将专门设计的动力外骨骼与神经肌肉刺激技术相结合,有可能提高步态速度和行走距离,从而形成一个能让使用者充分参与并满足在社区环境中行走必要条件的混合系统,同时还能获得肌肉收缩的益处。

相似文献

2
A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
J Neuroeng Rehabil. 2017 May 30;14(1):48. doi: 10.1186/s12984-017-0258-6.
4
Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia.
J Rehabil Res Dev. 2015;52(2):147-58. doi: 10.1682/JRRD.2014.02.0060.
5
Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
Eur J Phys Rehabil Med. 2019 Apr;55(2):209-216. doi: 10.23736/S1973-9087.18.05308-X. Epub 2018 Aug 27.
8
Modeling the Human Gait Phases by Using Bèzier Curves to Generate Walking Trajectories for Lower-Limb Exoskeletons.
IEEE Int Conf Rehabil Robot. 2023 Sep;2023:1-6. doi: 10.1109/ICORR58425.2023.10304766.
9
Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
PLoS One. 2018 Sep 17;13(9):e0203934. doi: 10.1371/journal.pone.0203934. eCollection 2018.

引用本文的文献

1
Exoskeletons for Mobility after Spinal Cord Injury: A Personalized Embodied Approach.
J Pers Med. 2022 Mar 1;12(3):380. doi: 10.3390/jpm12030380.
2
Sensors and Actuation Technologies in Exoskeletons: A Review.
Sensors (Basel). 2022 Jan 24;22(3):884. doi: 10.3390/s22030884.
3
Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
Front Robot AI. 2022 Jan 20;8:702860. doi: 10.3389/frobt.2021.702860. eCollection 2021.
4
Knee Joint Biomechanics in Physiological Conditions and How Pathologies Can Affect It: A Systematic Review.
Appl Bionics Biomech. 2020 Apr 3;2020:7451683. doi: 10.1155/2020/7451683. eCollection 2020.
5
Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review.
Neurotherapeutics. 2018 Jul;15(3):604-617. doi: 10.1007/s13311-018-0642-3.

本文引用的文献

1
Improving stand-to-sit maneuver for individuals with spinal cord injury.
J Neuroeng Rehabil. 2016 Mar 15;13:27. doi: 10.1186/s12984-016-0137-6.
3
Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking.
Top Spinal Cord Inj Rehabil. 2015 Spring;21(2):110-21. doi: 10.1310/sci2102-110. Epub 2015 Apr 12.
4
Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury.
Top Spinal Cord Inj Rehabil. 2015 Spring;21(2):100-9. doi: 10.1310/sci2102-100. Epub 2015 Apr 12.
5
Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton.
Top Spinal Cord Inj Rehabil. 2015 Spring;21(2):93-9. doi: 10.1310/sci2102-93. Epub 2015 Apr 12.
6
The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
J Neuroeng Rehabil. 2015 Jun 17;12:54. doi: 10.1186/s12984-015-0048-y.
7
An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia.
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):455-66. doi: 10.1109/TNSRE.2015.2421052. Epub 2015 Apr 23.
8
Understanding stand-to-sit maneuver: implications for motor system neuroprostheses after paralysis.
J Rehabil Res Dev. 2014;51(9):1339-51. doi: 10.1682/JRRD.2013.12.0264.
9
Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
Clin Rehabil. 2016 Jan;30(1):73-84. doi: 10.1177/0269215515575166. Epub 2015 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验