Suppr超能文献

一种用于辅助下肢外骨骼的自适应神经肌肉控制器:对脊髓损伤患者的初步研究

An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury.

作者信息

Wu Amy R, Dzeladini Florin, Brug Tycho J H, Tamburella Federica, Tagliamonte Nevio L, van Asseldonk Edwin H F, van der Kooij Herman, Ijspeert Auke J

机构信息

Biorobotics Laboratory, École Polytechnique Fédérale de LausanneLausanne, Switzerland.

Department of Biomechanical Engineering, University of TwenteEnschede, Netherlands.

出版信息

Front Neurorobot. 2017 Jun 20;11:30. doi: 10.3389/fnbot.2017.00030. eCollection 2017.

Abstract

Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limb muscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection), can be decomposed into relevant control modules (e.g., only knee or hip control), and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects ( = 7, four with complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects-from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged for most of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined settings for multiple walking speeds or adjustments for subjects of differing anthropometry and walking ability, NMC enabled SCI subjects to walk at several speeds, including near healthy speeds, in a healthy-like manner. These preliminary results are promising for future implementation of neuromuscular controllers on wearable prototypes for real-world walking conditions.

摘要

对于可穿戴外骨骼控制器而言,多功能性很重要,这样它才能对用户和环境都做出响应。这些特性对于脊髓损伤(SCI)患者尤为重要,因为积极调动他们自身的神经肌肉系统可以促进运动恢复。在此,我们展示了一种新型的、受生物启发的神经肌肉控制器(NMC)的能力,该控制器使用下肢肌肉的动力学模型来辅助SCI患者的步态。这种控制器的优点包括鲁棒性、模块化和适应性。该控制器只需要很少的输入(即关节角度、站立和摆动检测),可以分解为相关的控制模块(例如,仅膝关节或髋关节控制),并且在模拟中能够以不同速度和地形产生行走动作。我们在一个下肢膝关节和髋关节机器人步态训练器上对该控制器进行了初步评估,共有七名受试者(n = 7,四名完全性截瘫患者,两名不完全性截瘫患者,一名健康受试者),以确定NMC是否能够实现类似正常的行走。在实验过程中,SCI患者在跑步机上借助体重支撑行走,并且可以使用扶手。在控制器的辅助下,对于能够行走的SCI患者,他们能够以较快的行走速度行走——速度范围从0.6到1.4米/秒。测量得到的关节角度和NMC提供的关节扭矩与健康受试者在穿鞋行走时的运动学和生物关节扭矩相当吻合。在扭矩方面发现了一些差异,例如在站立中期附近缺乏膝关节屈曲,但关节角度轨迹似乎并未受到太大影响。NMC还调整了其扭矩输出,以便在更快的速度下提供更多的关节功,从而实现更大的关节角度和步长。我们还发现,大多数受试者出现了在健康人类中观察到的最佳速度 - 步长曲线,尽管在较快速度下步长相对较长。因此,在几乎没有传感器且没有针对多种行走速度的预定义设置,也没有针对不同人体测量学和行走能力的受试者进行调整的情况下,NMC使SCI患者能够以多种速度行走,包括接近健康人的速度,且行走方式类似健康人。这些初步结果对于未来在可穿戴原型上针对现实世界行走条件实施神经肌肉控制器很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9320/5476695/09d028de63fd/fnbot-11-00030-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验