Zhou Jie, Zhang Jiajia, Lu Wenbin
Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, U.S.A.
Department of Statistics, North Carolina State University, Raleigh, NC, U.S.A.
Stat Med. 2017 Mar 30;36(7):1157-1171. doi: 10.1002/sim.7204. Epub 2016 Dec 21.
The generalized odds-rate model is a class of semiparametric regression models, which includes the proportional hazards and proportional odds models as special cases. There are few works on estimation of the generalized odds-rate model with interval censored data because of the challenges in maximizing the complex likelihood function. In this paper, we propose a gamma-Poisson data augmentation approach to develop an Expectation Maximization algorithm, which can be used to fit the generalized odds-rate model to interval censored data. The proposed Expectation Maximization algorithm is easy to implement and is computationally efficient. The performance of the proposed method is evaluated by comprehensive simulation studies and illustrated through applications to datasets from breast cancer and hemophilia studies. In order to make the proposed method easy to use in practice, an R package 'ICGOR' was developed. Copyright © 2016 John Wiley & Sons, Ltd.
广义比值率模型是一类半参数回归模型,它包括比例风险模型和比例优势模型作为特殊情况。由于最大化复杂似然函数存在挑战,关于区间删失数据的广义比值率模型估计的研究很少。在本文中,我们提出一种伽马 - 泊松数据增强方法来开发一种期望最大化算法,该算法可用于将广义比值率模型拟合到区间删失数据。所提出的期望最大化算法易于实现且计算效率高。通过全面的模拟研究评估了所提出方法的性能,并通过应用于乳腺癌和血友病研究的数据集进行了说明。为了使所提出的方法在实践中易于使用,开发了一个R包“ICGOR”。版权所有© 2016约翰威立父子有限公司。