Suppr超能文献

一种用于将广义比值率模型拟合到区间删失数据的期望最大化算法。

An Expectation Maximization algorithm for fitting the generalized odds-rate model to interval censored data.

作者信息

Zhou Jie, Zhang Jiajia, Lu Wenbin

机构信息

Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, U.S.A.

Department of Statistics, North Carolina State University, Raleigh, NC, U.S.A.

出版信息

Stat Med. 2017 Mar 30;36(7):1157-1171. doi: 10.1002/sim.7204. Epub 2016 Dec 21.

Abstract

The generalized odds-rate model is a class of semiparametric regression models, which includes the proportional hazards and proportional odds models as special cases. There are few works on estimation of the generalized odds-rate model with interval censored data because of the challenges in maximizing the complex likelihood function. In this paper, we propose a gamma-Poisson data augmentation approach to develop an Expectation Maximization algorithm, which can be used to fit the generalized odds-rate model to interval censored data. The proposed Expectation Maximization algorithm is easy to implement and is computationally efficient. The performance of the proposed method is evaluated by comprehensive simulation studies and illustrated through applications to datasets from breast cancer and hemophilia studies. In order to make the proposed method easy to use in practice, an R package 'ICGOR' was developed. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

广义比值率模型是一类半参数回归模型,它包括比例风险模型和比例优势模型作为特殊情况。由于最大化复杂似然函数存在挑战,关于区间删失数据的广义比值率模型估计的研究很少。在本文中,我们提出一种伽马 - 泊松数据增强方法来开发一种期望最大化算法,该算法可用于将广义比值率模型拟合到区间删失数据。所提出的期望最大化算法易于实现且计算效率高。通过全面的模拟研究评估了所提出方法的性能,并通过应用于乳腺癌和血友病研究的数据集进行了说明。为了使所提出的方法在实践中易于使用,开发了一个R包“ICGOR”。版权所有© 2016约翰威立父子有限公司。

相似文献

1
An Expectation Maximization algorithm for fitting the generalized odds-rate model to interval censored data.
Stat Med. 2017 Mar 30;36(7):1157-1171. doi: 10.1002/sim.7204. Epub 2016 Dec 21.
2
Computationally Efficient Estimation for the Generalized Odds Rate Mixture Cure Model with Interval-Censored Data.
J Comput Graph Stat. 2018;27(1):48-58. doi: 10.1080/10618600.2017.1349665. Epub 2018 Feb 1.
3
A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data.
Biometrics. 2016 Mar;72(1):222-31. doi: 10.1111/biom.12389. Epub 2015 Sep 22.
4
Semiparametric regression on cumulative incidence function with interval-censored competing risks data.
Stat Med. 2017 Oct 15;36(23):3683-3707. doi: 10.1002/sim.7350. Epub 2017 Jun 12.
5
Semiparametric competing risks regression under interval censoring using the R package intccr.
Comput Methods Programs Biomed. 2019 May;173:167-176. doi: 10.1016/j.cmpb.2019.03.002. Epub 2019 Mar 8.
6
Regression analysis of arbitrarily censored survival data under the proportional odds model.
Stat Med. 2021 Jul 20;40(16):3724-3739. doi: 10.1002/sim.8994. Epub 2021 Apr 21.
7
A Bayesian proportional hazards model for general interval-censored data.
Lifetime Data Anal. 2015 Jul;21(3):470-90. doi: 10.1007/s10985-014-9305-9. Epub 2014 Aug 7.
8
A semiparametric probit model for case 2 interval-censored failure time data.
Stat Med. 2010 Apr 30;29(9):972-81. doi: 10.1002/sim.3832. Epub 2010 Jan 12.
9
Testing the proportional odds model for interval-censored data.
Lifetime Data Anal. 2007 Mar;13(1):37-50. doi: 10.1007/s10985-006-9029-6.

引用本文的文献

1
3
A Gamma-frailty proportional hazards model for bivariate interval-censored data.
Comput Stat Data Anal. 2018 Dec;128:354-366. doi: 10.1016/j.csda.2018.07.016. Epub 2018 Aug 7.

本文引用的文献

1
A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data.
Biometrics. 2016 Mar;72(1):222-31. doi: 10.1111/biom.12389. Epub 2015 Sep 22.
2
Regression analysis for current status data using the EM algorithm.
Stat Med. 2013 Nov 10;32(25):4452-66. doi: 10.1002/sim.5863. Epub 2013 Jun 12.
3
Semiparametric Efficient Estimation for a Class of Generalized Proportional Odds Cure Models.
J Am Stat Assoc. 2010;105(489):302-311. doi: 10.1198/jasa.2009.tm08459. Epub 2012 Jan 1.
4
Bayesian analysis of generalized odds-rate hazards models for survival data.
Lifetime Data Anal. 2007 Jun;13(2):241-60. doi: 10.1007/s10985-007-9035-3. Epub 2007 Mar 31.
5
Using conditional logistic regression to fit proportional odds models to interval censored data.
Biometrics. 2000 Jun;56(2):511-8. doi: 10.1111/j.0006-341x.2000.00511.x.
6
A multiple imputation approach to Cox regression with interval-censored data.
Biometrics. 2000 Mar;56(1):199-203. doi: 10.1111/j.0006-341x.2000.00199.x.
8
Analysis of survival data by the proportional odds model.
Stat Med. 1983 Apr-Jun;2(2):273-7. doi: 10.1002/sim.4780020223.
9
The effect of adjuvant chemotherapy on the cosmetic results after primary radiation treatment for early stage breast cancer.
Int J Radiat Oncol Biol Phys. 1984 Nov;10(11):2131-7. doi: 10.1016/0360-3016(84)90213-x.
10
Statistical analysis of survival experiments.
J Natl Cancer Inst. 1972 Aug;49(2):361-72.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验