Suppr超能文献

针对右删失事件发生时间数据的广义比值率回归模型类中的半参数有效估计。

Semiparametric efficient estimation in the generalized odds-rate class of regression models for right-censored time-to-event data.

作者信息

Scharfstein D O, Tsiatis A A, Gilbert P B

机构信息

Department of Biostatistics, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD 21205, USA.

出版信息

Lifetime Data Anal. 1998;4(4):355-91. doi: 10.1023/a:1009634103154.

Abstract

The generalized odds-rate class of regression models for time to event data is indexed by a non-negative constant rho and assumes that [formula: see text] where g: rho(s) = log(rho-1(s-rho - 1)) for rho > 0, g0(s) = log(-logs), S(t[symbol: see text]Z) is the survival function of the time to event for an individual with q x 1 covariate vector Z, beta is a q x 1 vector of unknown regression parameters, and alpha(t) is some arbitrary increasing function of t. When rho = 0, this model is equivalent to the proportional hazards model and when rho = 1, this model reduces to the proportional odds model. In the presence of right censoring, we construct estimators for beta and exp(alpha(t)) and show that they are consistent and asymptotically normal. In addition, we show that the estimator for beta is semiparametric efficient in the sense that it attains the semiparametric variance bound.

摘要

用于事件发生时间数据的回归模型的广义优势比类别由一个非负常数rho索引,并假设[公式:见文本],其中对于rho > 0,g: rho(s) = log(rho - 1(s - rho - 1)),g0(s) = log(-logs),S(t[符号:见文本]Z)是具有q×1协变量向量Z的个体的事件发生时间的生存函数,beta是未知回归参数的q×1向量,alpha(t)是t的某个任意递增函数。当rho = 0时,该模型等同于比例风险模型;当rho = 1时,该模型简化为比例优势模型。在存在右删失的情况下,我们构造了beta和exp(alpha(t))的估计量,并证明它们是一致的且渐近正态。此外,我们表明beta的估计量在达到半参数方差界的意义上是半参数有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验