Suppr超能文献

低指数金属表面上的芳香分子:多体色散效应。

Aromatic molecules on low-index coinage metal surfaces: Many-body dispersion effects.

机构信息

Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.

出版信息

Sci Rep. 2016 Dec 22;6:39529. doi: 10.1038/srep39529.

Abstract

Understanding the binding mechanism for aromatic molecules on transition-metal surfaces in atomic scale is a major challenge in designing functional interfaces for to (opto)electronic devices. Here, we employ the state-of-the-art many-body dispersion (MBD) approach, coupled with density functional theory methods, to study the interactions of benzene with low-index coinage metal surfaces. The many-body effects contribute mostly to the (111) surface, and leastly to the (110) surface. This corresponds to the same sequence of planar atomic density of face-centered-cubic lattices, i.e., (111) > (100) > (110). The binding energy for benzene/Au(110) is even stronger than that for benzene/Ag(110), due to a larger broadening of molecular orbitals in the former case. On the other hand, our calculations show almost identical binding energies for benzene on Ag(111) and Au(111), which contradicts the classic d-band center theory that could well predict the trend in chemisorption energies for various small molecules on a number of metal surfaces. Our results provide important insight into the benchmark adsorption systems with opener surfaces, which could help in designing more complex functional interfaces.

摘要

在原子尺度上理解芳香族分子在过渡金属表面上的结合机制,是设计用于光电设备的功能界面的主要挑战。在这里,我们采用最先进的多体色散(MBD)方法,结合密度泛函理论方法,研究了苯与低指数贵金属表面的相互作用。多体效应对(111)表面的贡献最大,对(110)表面的贡献最小。这与面心立方晶格的面心原子密度的相同顺序相对应,即(111)>(100)>(110)。由于前者分子轨道的展宽更大,苯/ Au(110)的结合能甚至比苯/Ag(110)的结合能更强。另一方面,我们的计算表明,苯在 Ag(111)和 Au(111)上的结合能几乎相同,这与经典的 d 带中心理论相矛盾,该理论可以很好地预测各种小分子在许多金属表面上的化学吸附能趋势。我们的结果为具有开口表面的基准吸附系统提供了重要的见解,这有助于设计更复杂的功能界面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3e/5177956/258c8300d5a2/srep39529-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验