Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
J Chem Phys. 2018 Jun 7;148(21):214703. doi: 10.1063/1.5030094.
Interfaces between organic molecules and inorganic solids adapt a prominent role in fundamental science, catalysis, molecular sensors, and molecular electronics. The molecular adsorption geometry, which is dictated by the strength of lateral and vertical interactions, determines the electronic structure of the molecule/substrate system. In this study, we investigate the binding properties of benzene on the noble metal surfaces Au(111), Ag(111), and Cu(111), respectively, using temperature-programmed desorption and first-principles calculations that account for non-locality of both electronic exchange and correlation effects. In the monolayer regime, we observed for all three systems a decrease of the binding energy with increasing coverage due to repulsive adsorbate/adsorbate interactions. Although the electronic properties of the noble metal surfaces are rather different, the binding strength of benzene on these surfaces is equal within the experimental error (accuracy of 0.05 eV), in excellent agreement with our calculations. This points toward the existence of a universal trend for the binding energy of aromatic molecules resulting from a subtle balance between Pauli repulsion and many-body van der Waals attraction.
有机分子和无机固体之间的界面在基础科学、催化、分子传感器和分子电子学中起着重要作用。分子吸附几何形状由侧向和垂直相互作用的强度决定,决定了分子/衬底系统的电子结构。在这项研究中,我们分别使用程序升温脱附和第一性原理计算研究了苯在贵金属表面 Au(111)、Ag(111)和 Cu(111)上的结合特性,其中考虑了电子交换和相关效应的非局域性。在单层范围内,我们观察到所有三种系统的结合能随覆盖度的增加而降低,这是由于排斥的吸附物/吸附物相互作用所致。尽管贵金属表面的电子性质相当不同,但苯在这些表面上的结合强度在实验误差(0.05 eV 的精度)内是相等的,与我们的计算结果非常吻合。这表明芳香族分子的结合能存在普遍趋势,这是由于泡利排斥和多体范德华吸引力之间的微妙平衡所致。