Lugenbiel Patrick, Wenz Fabian, Syren Pascal, Geschwill Pascal, Govorov Katharina, Seyler Claudia, Frank Derk, Schweizer Patrick A, Franke Jennifer, Weis Tanja, Bruehl Claus, Schmack Bastian, Ruhparwar Arjang, Karck Matthias, Frey Norbert, Katus Hugo A, Thomas Dierk
Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
Institute for Physiology and Pathophysiology, Heidelberg, Germany.
Basic Res Cardiol. 2017 Jan;112(1):8. doi: 10.1007/s00395-016-0597-7. Epub 2016 Dec 22.
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Concomitant heart failure (HF) poses a particular therapeutic challenge and is associated with prolonged atrial electrical refractoriness compared with non-failing hearts. We hypothesized that downregulation of atrial repolarizing TREK-1 (K2.1) K channels contributes to electrical remodeling during AF with HF, and that TREK-1 gene transfer would provide rhythm control via normalization of atrial effective refractory periods in this AF subset. In patients with chronic AF and HF, atrial TREK-1 mRNA levels were reduced by 82% (left atrium) and 81% (right atrium) compared with sinus rhythm (SR) subjects. Human findings were recapitulated in a porcine model of atrial tachypacing-induced AF and reduced left ventricular function. TREK-1 mRNA (-66%) and protein (-61%) was suppressed in AF animals at 14-day follow-up compared with SR controls. Downregulation of repolarizing TREK-1 channels was associated with prolongation of atrial effective refractory periods versus baseline conditions, consistent with prior observations in humans with HF. In a preclinical therapeutic approach, pigs were randomized to either atrial Ad-TREK-1 gene therapy or sham treatment. Gene transfer effectively increased TREK-1 protein levels and attenuated atrial effective refractory period prolongation in the porcine AF model. Ad-TREK-1 increased the SR prevalence to 62% during follow-up in AF animals, compared to 35% in the untreated AF group. In conclusion, TREK-1 downregulation and rhythm control by Ad-TREK-1 transfer suggest mechanistic and potential therapeutic significance of TREK-1 channels in a subgroup of AF patients with HF and prolonged atrial effective refractory periods. Functional correction of ionic remodeling through TREK-1 gene therapy represents a novel paradigm to optimize and specify AF management.
心房颤动(AF)是最常见的心律失常。合并心力衰竭(HF)带来了特殊的治疗挑战,与未发生衰竭的心脏相比,其与心房电不应期延长有关。我们假设,心房复极化TREK-1(K2.1)钾通道的下调促成了伴HF的AF期间的电重构,并且TREK-1基因转移将通过使该AF亚组的心房有效不应期正常化来实现节律控制。与窦性心律(SR)受试者相比,慢性AF和HF患者的心房TREK-1 mRNA水平在左心房降低了82%,在右心房降低了81%。在猪的心房超速起搏诱导的AF和左心室功能降低的模型中重现了人类研究结果。与SR对照组相比,AF动物在14天随访时TREK-1 mRNA(-66%)和蛋白质(-61%)受到抑制。与基线条件相比,复极化TREK-1通道的下调与心房有效不应期延长有关,这与先前在HF患者中的观察结果一致。在一种临床前治疗方法中,将猪随机分为接受心房Ad-TREK-1基因治疗或假手术治疗。基因转移有效地提高了猪AF模型中TREK-1蛋白水平,并减弱了心房有效不应期的延长。在AF动物的随访期间,Ad-TREK-1使SR患病率提高到62%,而未治疗的AF组为35%。总之,TREK-1下调以及Ad-TREK-1转移实现节律控制表明,TREK-1通道在伴HF且心房有效不应期延长的AF患者亚组中具有机制和潜在治疗意义。通过TREK-1基因治疗对离子重构进行功能校正代表了优化和明确AF管理的一种新范例。