Technology Research Development Department, Plastics Industry Development Center , Taichung 40768, Taiwan ( ROC ).
Department of Neurosurgery and ⬡Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital , Tao-Yuan 33302, Taiwan ( ROC ).
ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1273-1279. doi: 10.1021/acsami.6b13529. Epub 2017 Jan 5.
Heterogeneous Fenton reactions have been proven to be an effective and promising selective cancer cell treatment method. The key working mechanism for this method to achieve the critical therapeutic selectivity however remains unclear. In this study, we proposed and demonstrated for the first time the critical role played by catalase in realizing the therapeutic selectivity for the heterogeneous Fenton reaction-driven cancer cell treatment. The heterogeneous Fenton reaction, with the lattice ferric ions of the solid catalyst capable of converting HO to highly reactive hydroxyl radicals, can effectively eradicate cancer cells. In this study, SnFeO nanocrystals, a recently discovered outstanding heterogeneous Fenton catalyst, were applied for selective killing of lung cancer cells. The SnFeO nanocrystals, internalized into the cancer cells, can effectively convert endogenous HO into highly reactive hydroxyl radicals to invoke an intensive cytotoxic effect on the cancer cells. On the other hand, catalase, present at a significantly higher concentration in normal cells than in cancer cells, remarkably can impede the apoptotic cell death induced by the internalized SnFeO nanocrystals. According to the results obtained from the in vitro cytotoxicity study, the relevant oxidative attacks were effectively suppressed by the presence of normal physiological levels of catalase. The SnFeO nanocrystals were thus proved to effect apoptotic cancer cell death through the heterogeneous Fenton reaction and were benign to cells possessing normal physiological levels of catalase. The catalase modulation of the involved heterogeneous Fenton reaction plays the key role in achieving selective cancer cell eradication for the heterogeneous Fenton reaction-driven cancer cell treatment.
非均相 Fenton 反应已被证明是一种有效且有前途的选择性癌细胞治疗方法。然而,这种方法实现关键治疗选择性的关键工作机制仍不清楚。在这项研究中,我们首次提出并证明了过氧化氢酶在实现非均相 Fenton 反应驱动的癌细胞治疗的治疗选择性方面的关键作用。非均相 Fenton 反应中,固体催化剂的晶格铁离子能够将 HO 转化为高反应性的羟基自由基,可以有效地消灭癌细胞。在这项研究中,SnFeO 纳米晶体作为一种最近发现的出色的非均相 Fenton 催化剂,被用于选择性地杀死肺癌细胞。SnFeO 纳米晶体被内化到癌细胞中,可以有效地将内源性 HO 转化为高反应性的羟基自由基,对癌细胞产生强烈的细胞毒性作用。另一方面,过氧化氢酶在正常细胞中的浓度明显高于癌细胞,它可以显著阻止内化的 SnFeO 纳米晶体诱导的细胞凋亡。根据体外细胞毒性研究的结果,正常生理水平的过氧化氢酶的存在有效地抑制了相关的氧化攻击。因此,SnFeO 纳米晶体通过非均相 Fenton 反应诱导癌细胞发生凋亡性死亡,并且对具有正常生理水平过氧化氢酶的细胞是良性的。过氧化氢酶对所涉及的非均相 Fenton 反应的调节在实现非均相 Fenton 反应驱动的癌细胞治疗的选择性癌细胞消除中起着关键作用。
Nanomaterials (Basel). 2023-12-24
ACS Appl Bio Mater. 2020-3-16
ACS Appl Mater Interfaces. 2016-3-9
J Environ Sci (China). 2016-1
Cancer Biother Radiopharm. 2010-8
Signal Transduct Target Ther. 2024-8-12
Materials (Basel). 2024-6-13
MedComm (2020). 2024-4-4
Pharmaceutics. 2023-4-11
Front Bioeng Biotechnol. 2022-8-30