文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications.

作者信息

Sun Huilin, Bai Yang, Zhao Donghui, Wang Jianhao, Qiu Lin

机构信息

School of Pharmacy, Changzhou University, Changzhou 213164, China.

出版信息

Materials (Basel). 2024 Jun 13;17(12):2896. doi: 10.3390/ma17122896.


DOI:10.3390/ma17122896
PMID:38930266
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11205014/
Abstract

Transition metal oxide (TMO)-based nanozymes have appeared as hopeful tools for antitumor applications due to their unique catalytic properties and ability to modulate the tumor microenvironment (TME). The purpose of this review is to provide an overview of the latest progress made in the field of TMO-based nanozymes, focusing on their enzymatic activities and participating metal ions. These nanozymes exhibit catalase (CAT)-, peroxidase (POD)-, superoxide dismutase (SOD)-, oxidase (OXD)-, and glutathione oxidase (GSH-OXD)-like activities, enabling them to regulate reactive oxygen species (ROS) levels and glutathione (GSH) concentrations within the TME. Widely studied transition metals in TMO-based nanozymes include Fe, Mn, Cu, Ce, and the hybrid multimetallic oxides, which are also summarized. The review highlights several innovative nanozyme designs and their multifunctional capabilities. Despite the significant progress in TMO-based nanozymes, challenges such as long-term biosafety, targeting precision, catalytic mechanisms, and theoretical supports remain to be addressed, and these are also discussed. This review contributes to the summary and understanding of the rapid development of TMO-based nanozymes, which holds great promise for advancing nanomedicine and improving cancer treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/55cf25daa5f3/materials-17-02896-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/69edc4e1a8f1/materials-17-02896-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/8725f3e820db/materials-17-02896-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/a7dc1568f628/materials-17-02896-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/f0e59311d3e0/materials-17-02896-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/d5f1f4297b8a/materials-17-02896-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/419a37945f50/materials-17-02896-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/2aecbd114b04/materials-17-02896-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/089e99d2c8ba/materials-17-02896-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/96cbf70a5cb3/materials-17-02896-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/dc05e7add8b9/materials-17-02896-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/55cf25daa5f3/materials-17-02896-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/69edc4e1a8f1/materials-17-02896-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/8725f3e820db/materials-17-02896-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/a7dc1568f628/materials-17-02896-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/f0e59311d3e0/materials-17-02896-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/d5f1f4297b8a/materials-17-02896-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/419a37945f50/materials-17-02896-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/2aecbd114b04/materials-17-02896-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/089e99d2c8ba/materials-17-02896-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/96cbf70a5cb3/materials-17-02896-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/dc05e7add8b9/materials-17-02896-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/11205014/55cf25daa5f3/materials-17-02896-g009.jpg

相似文献

[1]
Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications.

Materials (Basel). 2024-6-13

[2]
Transition-Metal-Based Nanozymes: Synthesis, Mechanisms of Therapeutic Action, and Applications in Cancer Treatment.

ACS Nano. 2024-5-14

[3]
Vanadium Oxide Nanozymes with Multiple Enzyme-Mimic Activities for Tumor Catalytic Therapy.

ACS Appl Mater Interfaces. 2023-3-10

[4]
Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped CuS nanozymes.

Acta Biomater. 2022-10-1

[5]
Nanozyme-based catalytic theranostics.

RSC Adv. 2019-12-23

[6]
"Spark" PtMnIr Nanozymes for Electrodynamic-Boosted Multienzymatic Tumor Immunotherapy.

Adv Mater. 2024-3

[7]
Nanozymes: From New Concepts, Mechanisms, and Standards to Applications.

Acc Chem Res. 2019-7-5

[8]
Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications.

Small. 2022-9

[9]
Nanozyme-Based Enhanced Cancer Immunotherapy.

Tissue Eng Regen Med. 2022-4

[10]
Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.

Acta Biomater. 2021-11

引用本文的文献

[1]
Novel multifunctional targeted nanozyme as an ultrasound contrast agent for real-time monitoring and treatment of congenital hydronephrosis renal fibrosis.

J Nanobiotechnology. 2025-8-6

本文引用的文献

[1]
Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy.

Nat Commun. 2024-2-22

[2]
Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity.

Adv Sci (Weinh). 2024-1

[3]
Recent progress of metal-based nanomaterials with anti-tumor biological effects for enhanced cancer therapy.

Exploration (Beijing). 2023-6-30

[4]
Confining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy.

Adv Mater. 2023-11

[5]
Catalytic Tunable Black Phosphorus/Ceria Nanozyme: A Versatile Oxidation Cycle Accelerator for Alleviating Cisplatin-Induced Acute Kidney Injury.

Adv Healthc Mater. 2023-12

[6]
Manganese molybdate nanodots with dual amplification of STING activation for "cycle" treatment of metalloimmunotherapy.

Bioact Mater. 2023-8-8

[7]
Immunogenic radiation therapy for enhanced anti-tumor immunity core-shell nanocomposite-mediated multiple strategies.

Theranostics. 2023

[8]
Novel PdPtCu Nanozymes for Reprogramming Tumor Microenvironment to Boost Immunotherapy Through Endoplasmic Reticulum Stress and Blocking IDO-Mediated Immune Escape.

Small. 2023-11

[9]
Functionalized ZnMnFeO-PEG-FA nanoenzymes integrating diagnosis and therapy for targeting hepatic carcinoma guided by multi-modality imaging.

Nanoscale. 2023-7-6

[10]
Atomic vacancies-engineered ultrathin trimetallic nanozyme with anti-inflammation and antitumor performances for intestinal disease treatment.

Biomaterials. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索