Wang Aiguo, An Ning, Yang Jing, Chen Guilin, Li Lian, Alterovitz Gil
School of Computer and Information, Hefei University of Technology, Hefei, China.
School of Computer and Information Engineering, Chuzhou University, Chuzhou, China.
Comput Biol Med. 2017 Feb 1;81:11-23. doi: 10.1016/j.compbiomed.2016.12.002. Epub 2016 Dec 5.
Gene selection seeks to find a small subset of discriminant genes from the gene expression profiles. Current gene selection methods such as wrapper-based models mainly address the issue of obtaining high-quality gene subsets. However, they are considerably time consuming, due to the existence of irrelevant and redundant genes. In this study, we present an improved wrapper-based gene selection method by introducing the Markov blanket technique to reduce the required wrapper evaluation time. In addition, our method can identify targeting genes while eliminating redundant ones in an efficient way. We use ten publicly available microarray datasets to evaluate the proposed method. The results show that our method can handle gene selection effectively. Our experimental results also show that wrapper-based method combined with the Markov blanket outperforms other competing methods in terms of classification accuracy and time/space complexity.
基因选择旨在从基因表达谱中找到一小部分具有判别能力的基因。当前的基因选择方法,如基于包装器的模型,主要解决的是获得高质量基因子集的问题。然而,由于存在不相关和冗余的基因,这些方法相当耗时。在本研究中,我们通过引入马尔可夫毯技术来减少所需的包装器评估时间,提出了一种改进的基于包装器的基因选择方法。此外,我们的方法可以在有效消除冗余基因的同时识别靶向基因。我们使用十个公开可用的微阵列数据集来评估所提出的方法。结果表明,我们的方法能够有效地处理基因选择问题。我们的实验结果还表明,基于包装器的方法与马尔可夫毯相结合,在分类准确性和时间/空间复杂度方面优于其他竞争方法。