Center for Quantum Devices and Station Q Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
State Key Laboratory of High Performance Computing, National University of Defense Technology, 410073, Changsha, P. R. China.
Science. 2016 Dec 23;354(6319):1557-1562. doi: 10.1126/science.aaf3961.
Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.
结合半导体和超导体材料的混合纳米线似乎非常适合创造、检测和控制马约拉纳束缚态(MBS)。我们使用纳米线末端的量子点作为光谱仪,在具有外延 Al 的混合 InAs 纳米线中,证明了从合并的安德烈夫束缚态(ABS)中出现 MBS。静电门控将纳米线密度调谐到一个或几个 ABS 的区域。在施加的轴向磁场中,出现了一个拓扑相,其中 ABS 移动到零能量并保持在那里,形成 MBS。我们观察到 MBS 与端点束缚态的杂化,这与数值模型一致。ABS/MBS 光谱提供了有助于理解该系统中拓扑超导性的参数。