Suppr超能文献

肌动蛋白调节复合物的相反功能揭示了丝状伪足和隧道纳米管的差异特性。

Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes.

机构信息

Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France.

Ultrapole, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France.

出版信息

Sci Rep. 2016 Dec 23;6:39632. doi: 10.1038/srep39632.

Abstract

Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.

摘要

隧道纳米管(TNTs)是富含肌动蛋白的丝状伪足样突起,在细胞间长距离通讯中起着关键作用。不同的病原体利用 TNT 样结构作为“高速公路”在细胞间传播。TNTs 也与癌症和神经退行性疾病有关,因此成为有前途的治疗靶点。了解它们形成的机制及其与丝状伪足的关系对于揭示其生理功能至关重要,特别是因为与 TNTs 不同,丝状伪足不能介导细胞间的货物转移。在这里,我们研究了在这两种结构形成中起作用的不同肌动蛋白调节复合物。我们证明,促进丝状伪足形成的 CDC42/IRSp53/VASP 网络负调节 TNT 的形成,并损害 TNT 介导的细胞间囊泡转移。相反,肌动蛋白调节蛋白 Eps8 的升高会增加 TNT 的形成,Eps8 抑制神经元中丝状伪足的延伸。值得注意的是,Eps8 介导的 TNT 诱导需要 Eps8 束,但不需要其盖帽活性。因此,尽管它们在结构上相似,但丝状伪足和 TNTs 是通过不同的分子机制形成的。我们的结果进一步表明,常见肌动蛋白调节复合物中的分子组成的转换对于驱动任何一种膜突起的形成都是至关重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6c/5180355/4c36a2e6d0b6/srep39632-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验