Suppr超能文献

射频治疗会改变癌细胞表型。

Radiofrequency treatment alters cancer cell phenotype.

作者信息

Ware Matthew J, Tinger Sophia, Colbert Kevin L, Corr Stuart J, Rees Paul, Koshkina Nadezhda, Curley Steven, Summers H D, Godin Biana

机构信息

1] Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA [2] Centre for Nanohealth, College of Engineering, Swansea University, Swansea, UK.

Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.

出版信息

Sci Rep. 2015 Jul 13;5:12083. doi: 10.1038/srep12083.

Abstract

The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

摘要

评估物理线索在癌症研究中的重要性正逐渐得到认可。对癌细胞物理外观或表型的评估可能会提供有关细胞行为变化的信息,包括迁移或通讯变化。这些特征在恶性和非恶性细胞之间本质上是不同的,并且会随着治疗或疾病进展而改变。在此,我们报告胰腺癌细胞表型因一种癌症治疗的物理方法(一种目前正在开发用于人体试验的非侵入性射频(RF)治疗)而发生改变。我们提供了一系列测试来探究这些表型特征。我们的数据表明,治疗导致细胞拓扑结构、形态、运动性、黏附力和分裂发生变化。这些可能会对组织结构、抗癌治疗药物的扩散以及肿瘤内癌细胞的敏感性产生影响。在未治疗状态以及对射频治疗的反应中,癌细胞和正常细胞之间均观察到明显的表型差异。我们还首次报告了微米级颗粒通过隧道纳米管的转移,这些隧道纳米管是癌细胞对射频治疗的反应产物。此外,我们提供证据表明癌细胞的各种亚群对射频治疗的反应存在异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d67/4499808/073866fe1107/srep12083-f1.jpg

相似文献

1
Radiofrequency treatment alters cancer cell phenotype.
Sci Rep. 2015 Jul 13;5:12083. doi: 10.1038/srep12083.
10
Histopathological findings after radiofrequency (RITA) treatment for prostate cancer.
Prostate Cancer Prostatic Dis. 2006;9(3):266-9. doi: 10.1038/sj.pcan.4500877. Epub 2006 May 9.

引用本文的文献

1
Effects of 27.12 MHz short-waves on fibroblast cell culture and K-562 and ML-1 neoplastic cell lines.
Turk J Phys Med Rehabil. 2024 Jul 26;71(1):83-91. doi: 10.5606/tftrd.2024.14635. eCollection 2025 Mar.
2
The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure.
NeuroImmune Pharm Ther. 2023 Jan 4;2(2):169-186. doi: 10.1515/nipt-2022-0015. eCollection 2023 Jun.
3
Cell mechanical properties of human breast carcinoma cells depend on temperature.
Sci Rep. 2021 May 24;11(1):10771. doi: 10.1038/s41598-021-90173-y.
4
Strategies to Get Drugs across Bladder Penetrating Barriers for Improving Bladder Cancer Therapy.
Pharmaceutics. 2021 Jan 27;13(2):166. doi: 10.3390/pharmaceutics13020166.
5
Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells.
Front Cell Dev Biol. 2020 Nov 6;8:596079. doi: 10.3389/fcell.2020.596079. eCollection 2020.
7
Environmentally controlled magnetic nano-tweezer for living cells and extracellular matrices.
Sci Rep. 2020 Aug 10;10(1):13453. doi: 10.1038/s41598-020-70428-w.
8
Heating technology for malignant tumors: a review.
Int J Hyperthermia. 2020;37(1):711-741. doi: 10.1080/02656736.2020.1779357.
9
Chemotherapy-Induced Tunneling Nanotubes Mediate Intercellular Drug Efflux in Pancreatic Cancer.
Sci Rep. 2018 Jun 21;8(1):9484. doi: 10.1038/s41598-018-27649-x.

本文引用的文献

1
Analysis of the influence of cell heterogeneity on nanoparticle dose response.
ACS Nano. 2014 Jul 22;8(7):6693-700. doi: 10.1021/nn502356f.
2
Tight coupling between nucleus and cell migration through the perinuclear actin cap.
J Cell Sci. 2014 Jun 1;127(Pt 11):2528-41. doi: 10.1242/jcs.144345. Epub 2014 Mar 17.
4
Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles.
Int J Nanomedicine. 2013;8:3603-17. doi: 10.2147/IJN.S51668. Epub 2013 Oct 1.
5
Membrane nanotubes: novel communication between distant cells.
Sci China Life Sci. 2013 Nov;56(11):994-9. doi: 10.1007/s11427-013-4548-3. Epub 2013 Sep 5.
6
Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields.
PLoS One. 2013 Jul 4;8(7):e68506. doi: 10.1371/journal.pone.0068506. Print 2013.
8
Predicting how cells spread and migrate: focal adhesion size does matter.
Cell Adh Migr. 2013 May-Jun;7(3):293-6. doi: 10.4161/cam.24804. Epub 2013 Apr 29.
10
Is the effect of mobile phone radiofrequency waves on human skin perfusion non-thermal?
Microcirculation. 2013 Oct;20(7):629-36. doi: 10.1111/micc.12062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验