Huang Jianbei, Hammerbacher Almuth, Forkelová Lenka, Hartmann Henrik
Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany.
Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.
Plant Cell Environ. 2017 May;40(5):672-685. doi: 10.1111/pce.12885. Epub 2017 Feb 1.
The atmospheric CO concentration ([CO ]) is rapidly increasing, and this may have substantial impact on how plants allocate metabolic resources. A thorough understanding of allocation priorities can be achieved by modifying [CO ] over a large gradient, including low [CO ], thereby altering plant carbon (C) availability. Such information is of critical importance for understanding plant responses to global environmental change. We quantified the percentage of daytime whole-plant net assimilation (A) allocated to night-time respiration (R), structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during 8 weeks of vegetative growth in winter wheat (Triticum aestivum) growing at low, ambient and elevated [CO ] (170, 390 and 680 ppm). R/A remained relatively constant over a large gradient of [CO ]. However, with increasing C availability, the fraction of assimilation allocated to biomass (SG + NSC + SMs), in particular NSC and SMs, increased. At low [CO ], biomass and NSC increased in leaves but decreased in stems and roots, which may help plants achieve a functional equilibrium, that is, overcome the most severe resource limitation. These results reveal that increasing C availability from rising [CO ] releases allocation constraints, thereby allowing greater investment into long-term survival in the form of NSC and SMs.
大气中一氧化碳浓度([CO])正在迅速增加,这可能会对植物分配代谢资源的方式产生重大影响。通过在较大梯度范围内改变[CO],包括低[CO]水平,从而改变植物的碳(C)可利用性,能够全面了解分配优先级。此类信息对于理解植物对全球环境变化的响应至关重要。我们对冬小麦(Triticum aestivum)在低、环境和高[CO](170、390和680 ppm)条件下营养生长8周期间,白天全株净同化量(A)分配到夜间呼吸(R)、结构生长(SG)、非结构性碳水化合物(NSC)和次生代谢物(SMs)的百分比进行了量化。在较大的[CO]梯度范围内,R/A保持相对恒定。然而,随着碳可利用性的增加,分配到生物量(SG + NSC + SMs),特别是NSC和SMs的同化部分增加。在低[CO]条件下,叶片中的生物量和NSC增加,但茎和根中的则减少,这可能有助于植物实现功能平衡,即克服最严重的资源限制。这些结果表明,[CO]升高导致的碳可利用性增加缓解了分配限制,从而能够以NSC和SMs的形式对长期生存进行更多投资。