Robin Michelle, Gomes Alves Eliane, Taylor Tyeen C, Pinheiro Oliveira Débora, Duvoisin Sérgio, Gonçalves José Francisco C, Schöngart Jochen, Wittmann Florian, Piedade Maria T F, Trumbore Susan, Schietti Juliana
Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.
Post-Graduation Program in Ecology, National Institute of Amazonian Research, Manaus, Brazil.
Front Plant Sci. 2025 May 27;16:1561316. doi: 10.3389/fpls.2025.1561316. eCollection 2025.
Plant responses to stress, inter-organismal signaling, and atmospheric chemistry are significantly influenced by leaf volatile isoprenoid (VI) emissions (e.g., isoprene and monoterpenes). Despite their critical roles in ecology and the atmosphere, we have little understanding of whether and how VI emissions vary with axes of plant functional variation. Understanding these relationships is particularly important in tropical forests, which emit more VIs into the atmosphere than any other biome, and where high species diversity necessitates the imputation of plant traits based on functional and evolutionary relationships. Here, we investigated how VI emissions varied with functional trait axes of fast-slow carbon economics strategies (CES) in Central Amazon Forest woody species. We measured leaf-level isoprene and monoterpene emission capacity ( ; emission measured under standard conditions of photosynthetically active radiation of 1000 µmol m s and leaf temperature of 30 ˚C), and 12 leaf and four stem functional traits for 91 trees from 31 species of angiosperm distributed across different vegetation types: non-flooded upland, white sand, and ancient non-flooded river terrace forests. Principal component analysis (PCA) of functional traits revealed two partially independent main axes of CES: a first axis of leaf strategies and a second of mixed leaf/stem strategies. The capacity to emit monoterpenes was observed in 27 species, and monoterpene emitters occupied the whole range of fast-slow strategies, but magnitudes of monoterpene increased toward faster leaves. The capacity to emit isoprene was observed in 14 species, and isoprene emitters tended to be positioned toward slower leaf/stem strategies, with magnitudes of isoprene also increasing toward slower leaves/stems. Our results highlight the importance of understanding leaf-level emissions to accurately estimate VI fluxes and provide a holistic view of emissions within CES on different organ-system levels. This shows a direction for improving current modeling estimates, which have simplified plant functional type representations and are poorly developed for compounds other than isoprene in the tropics. A more mechanistic representation of plant functional types based on forest functional compositions can reduce modeling emission uncertainties and contribute to understanding the roles of VIs within forest-atmosphere interactions, atmospheric chemistry, and the carbon cycle.
植物对胁迫、生物体间信号传导以及大气化学的响应,会受到叶片挥发性类异戊二烯(VI)排放(例如异戊二烯和单萜)的显著影响。尽管它们在生态和大气中发挥着关键作用,但我们对VI排放是否以及如何随植物功能变异轴而变化却知之甚少。了解这些关系在热带森林中尤为重要,因为热带森林向大气中排放的VI比其他任何生物群落都多,而且在热带森林中,物种高度多样性使得基于功能和进化关系来推断植物性状成为必要。在此,我们研究了亚马逊中部森林木本物种中,VI排放如何随快速 - 慢速碳经济策略(CES)的功能性状轴而变化。我们测量了叶片水平的异戊二烯和单萜排放能力(;在光合有效辐射为1000 µmol m² s⁻¹且叶片温度为30˚C的标准条件下测量的排放),以及来自分布于不同植被类型(非水淹高地、白沙和古老非水淹河漫滩森林)的31种被子植物的91棵树的12个叶片和4个茎干功能性状。功能性状的主成分分析(PCA)揭示了CES的两个部分独立的主轴:一个是叶片策略的第一轴,另一个是叶片/茎干混合策略的第二轴。在27个物种中观察到了排放单萜的能力,单萜排放者占据了快速 - 慢速策略的整个范围,但单萜排放的幅度朝着更快的叶片增加。在14个物种中观察到了排放异戊二烯的能力,异戊二烯排放者倾向于处于较慢的叶片/茎干策略位置,异戊二烯排放的幅度也朝着较慢的叶片/茎干增加。我们的结果强调了理解叶片水平排放对于准确估计VI通量的重要性,并提供了在不同器官 - 系统水平上CES内排放的整体视图。这为改进当前的模型估计指明了方向,当前的模型估计简化了植物功能类型的表示,并且对于热带地区除异戊二烯之外的化合物开发不足。基于森林功能组成对植物功能类型进行更具机制性的表示,可以减少模型排放的不确定性,并有助于理解VI在森林 - 大气相互作用、大气化学和碳循环中的作用。