Li Ruixi, Rodriguez-Furlan Cecilia, Wang Junqi, van de Ven Wilhelmina, Gao Ting, Raikhel Natasha V, Hicks Glenn R
Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521.
Department of Botany and Plant Sciences, University of California, Riverside, California 92521.
Plant Cell. 2017 Jan;29(1):90-108. doi: 10.1105/tpc.16.00524. Epub 2016 Dec 23.
The endomembrane system is an interconnected network required to establish signal transduction, cell polarity, and cell shape in response to developmental or environmental stimuli. In the model plant , there are numerous markers to visualize polarly localized plasma membrane proteins utilizing endomembrane trafficking. Previous studies have shown that the large ARF-GEF GNOM plays a key role in the establishment of basal (rootward) polarity, whereas the apically (shootward) polarized membrane proteins undergo sorting via different routes. However, the mechanism that maintains apical polarity is largely unknown. Here, we used a chemical genomic approach and identified the compound endosidin 16 (ES16), which perturbed apically localized plasma membrane proteins without affecting basal polarity. We demonstrated that ES16 is an inhibitor for recycling of apical, lateral, and nonpolar plasma membrane proteins as well as biosynthetic secretion, leaving the basal proteins as the only exceptions not subject to ES16 inhibition. Further evidence from pharmaceutical and genetic data revealed that ES16 effects are mediated through the regulation of small GTPase RabA proteins and that RabA GTPases work in concert with the BIG clade ARF-GEF to modulate the nonbasal trafficking. Our results reveal that ES16 defines a distinct pathway for endomembrane sorting routes and is essential for the establishment of cell polarity.
内膜系统是一个相互连接的网络,在响应发育或环境刺激时建立信号转导、细胞极性和细胞形态所必需的。在模式植物中,有许多标记物可利用内膜运输来可视化极性定位的质膜蛋白。先前的研究表明,大型ARF-GEF GNOM在基部(向根)极性的建立中起关键作用,而顶端(向茎)极化的膜蛋白则通过不同途径进行分选。然而,维持顶端极性的机制在很大程度上尚不清楚。在这里,我们使用化学基因组学方法鉴定了化合物内消旋素16(ES16),它扰乱了顶端定位的质膜蛋白而不影响基部极性。我们证明ES16是顶端、侧面和非极性质膜蛋白回收以及生物合成分泌的抑制剂,基部蛋白是唯一不受ES16抑制的例外。来自药物和遗传数据的进一步证据表明,ES16的作用是通过对小GTP酶RabA蛋白的调节介导的,并且RabA GTP酶与BIG进化枝ARF-GEF协同作用来调节非基部运输。我们的结果表明,ES16定义了内膜分选途径的一条独特途径,并且对于细胞极性的建立至关重要。