Suppr超能文献

不同的内膜运输途径建立顶端和基底极性。

Different Endomembrane Trafficking Pathways Establish Apical and Basal Polarities.

作者信息

Li Ruixi, Rodriguez-Furlan Cecilia, Wang Junqi, van de Ven Wilhelmina, Gao Ting, Raikhel Natasha V, Hicks Glenn R

机构信息

Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521.

Department of Botany and Plant Sciences, University of California, Riverside, California 92521.

出版信息

Plant Cell. 2017 Jan;29(1):90-108. doi: 10.1105/tpc.16.00524. Epub 2016 Dec 23.

Abstract

The endomembrane system is an interconnected network required to establish signal transduction, cell polarity, and cell shape in response to developmental or environmental stimuli. In the model plant , there are numerous markers to visualize polarly localized plasma membrane proteins utilizing endomembrane trafficking. Previous studies have shown that the large ARF-GEF GNOM plays a key role in the establishment of basal (rootward) polarity, whereas the apically (shootward) polarized membrane proteins undergo sorting via different routes. However, the mechanism that maintains apical polarity is largely unknown. Here, we used a chemical genomic approach and identified the compound endosidin 16 (ES16), which perturbed apically localized plasma membrane proteins without affecting basal polarity. We demonstrated that ES16 is an inhibitor for recycling of apical, lateral, and nonpolar plasma membrane proteins as well as biosynthetic secretion, leaving the basal proteins as the only exceptions not subject to ES16 inhibition. Further evidence from pharmaceutical and genetic data revealed that ES16 effects are mediated through the regulation of small GTPase RabA proteins and that RabA GTPases work in concert with the BIG clade ARF-GEF to modulate the nonbasal trafficking. Our results reveal that ES16 defines a distinct pathway for endomembrane sorting routes and is essential for the establishment of cell polarity.

摘要

内膜系统是一个相互连接的网络,在响应发育或环境刺激时建立信号转导、细胞极性和细胞形态所必需的。在模式植物中,有许多标记物可利用内膜运输来可视化极性定位的质膜蛋白。先前的研究表明,大型ARF-GEF GNOM在基部(向根)极性的建立中起关键作用,而顶端(向茎)极化的膜蛋白则通过不同途径进行分选。然而,维持顶端极性的机制在很大程度上尚不清楚。在这里,我们使用化学基因组学方法鉴定了化合物内消旋素16(ES16),它扰乱了顶端定位的质膜蛋白而不影响基部极性。我们证明ES16是顶端、侧面和非极性质膜蛋白回收以及生物合成分泌的抑制剂,基部蛋白是唯一不受ES16抑制的例外。来自药物和遗传数据的进一步证据表明,ES16的作用是通过对小GTP酶RabA蛋白的调节介导的,并且RabA GTP酶与BIG进化枝ARF-GEF协同作用来调节非基部运输。我们的结果表明,ES16定义了内膜分选途径的一条独特途径,并且对于细胞极性的建立至关重要。

相似文献

1
Different Endomembrane Trafficking Pathways Establish Apical and Basal Polarities.
Plant Cell. 2017 Jan;29(1):90-108. doi: 10.1105/tpc.16.00524. Epub 2016 Dec 23.
2
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E806-15. doi: 10.1073/pnas.1424856112. Epub 2015 Feb 2.
3
A specific role for Arabidopsis TRAPPII in post-Golgi trafficking that is crucial for cytokinesis and cell polarity.
Plant J. 2011 Oct;68(2):234-48. doi: 10.1111/j.1365-313X.2011.04681.x. Epub 2011 Jul 26.
4
A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis.
PLoS Genet. 2018 Nov 15;14(11):e1007795. doi: 10.1371/journal.pgen.1007795. eCollection 2018 Nov.
6
An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells.
Nature. 2007 Jul 26;448(7152):493-6. doi: 10.1038/nature06023.
7
Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking.
Curr Biol. 2009 Mar 10;19(5):391-7. doi: 10.1016/j.cub.2009.01.057. Epub 2009 Feb 19.
9
Functional diversification of closely related ARF-GEFs in protein secretion and recycling.
Nature. 2007 Jul 26;448(7152):488-92. doi: 10.1038/nature05967.
10
BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis.
Plant Cell. 2012 Jul;24(7):3074-86. doi: 10.1105/tpc.112.098152. Epub 2012 Jul 5.

引用本文的文献

1
Electron Microscopy Analysis of Membraneless Condensates in Plant Cells.
Methods Mol Biol. 2024;2841:199-205. doi: 10.1007/978-1-0716-4059-3_19.
2
An Overview of Protein Secretion in Plant Cells.
Methods Mol Biol. 2024;2841:19-36. doi: 10.1007/978-1-0716-4059-3_2.
4
The sorting of cargo proteins in the plant -Golgi network.
Front Plant Sci. 2022 Aug 11;13:957995. doi: 10.3389/fpls.2022.957995. eCollection 2022.
5
Arabidopsis HOPS subunit VPS41 carries out plant-specific roles in vacuolar transport and vegetative growth.
Plant Physiol. 2022 Jun 27;189(3):1416-1434. doi: 10.1093/plphys/kiac167.
9
Cell biology of primary cell wall synthesis in plants.
Plant Cell. 2022 Jan 20;34(1):103-128. doi: 10.1093/plcell/koab249.

本文引用的文献

1
Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E41-50. doi: 10.1073/pnas.1521248112. Epub 2015 Nov 25.
2
PIN proteins and the evolution of plant development.
Trends Plant Sci. 2015 Aug;20(8):498-507. doi: 10.1016/j.tplants.2015.05.005. Epub 2015 Jun 4.
3
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E806-15. doi: 10.1073/pnas.1424856112. Epub 2015 Feb 2.
7
The plant endomembrane system--a complex network supporting plant development and physiology.
Plant Cell Physiol. 2014 Apr;55(4):667-71. doi: 10.1093/pcp/pcu049.
9
Orchestration of cell surface proteins by Rab11.
Trends Cell Biol. 2014 Jul;24(7):407-15. doi: 10.1016/j.tcb.2014.02.004. Epub 2014 Mar 24.
10
Cell wall polysaccharides are mislocalized to the Vacuole in echidna mutants.
Plant Cell Physiol. 2013 Nov;54(11):1867-80. doi: 10.1093/pcp/pct129. Epub 2013 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验