Ragsdale Mary I, Wong Felix S, Boutin Robert D, Meehan John P
Department of Orthopedic Surgery, University of California, Davis, Sacramento, California.
Department of Radiology, University of California, Davis, Sacramento, California.
J Arthroplasty. 2017 May;32(5):1665-1669. doi: 10.1016/j.arth.2016.11.026. Epub 2016 Nov 23.
The sacro-femoral-pubic (SFP) parameter, calculated using the SFP angle measured on a frontal pelvis radiograph, has previously been shown to have a strong correlation with sagittal pelvic tilt (PT) measured on a lateral x-ray. The purpose of this study is to assess the validity, interobserver reliability and intraobserver reproducibility of the SFP parameter in predicting the sagittal PT.
This is a retrospective study of 100 patients with frontal and lateral radiographs of the pelvis. Two observers independently measured the SFP angle on frontal x-ray (midpoint of S1 end plate to centroid of acetabula to upper midpoint of the pubic symphysis) and PT on lateral x-ray (midpoint of sacral plate to the centroid of acetabula to vertical plane). The SFP parameter was defined using the equation: SFP parameter = 75 - SFP angle. The interobserver reliability and intraobserver reproducibility were calculated using interclass correlation coefficient (ICC). Validity of the SFP parameter was calculated using Pearson correlation coefficient.
The intraobserver reproducibility of the SFP parameter was excellent (ICC >0.90) for both observers. The interobserver reliability of all measurements was substantial for the SFP parameter (ICC >0.80) and PT (ICC >0.70). The concurrent validity of the SFP parameter was substantial (r = 0.70).
Calculating PT from a frontal radiograph using the equation for the SFP parameter is a valid, reliable, and reproducible formula that may be used to predict sagittal PT.
利用骨盆正位X线片上测量的骶股耻骨(SFP)角计算得出的SFP参数,此前已被证明与侧位X线片上测量的矢状骨盆倾斜角(PT)密切相关。本研究的目的是评估SFP参数在预测矢状PT方面的有效性、观察者间可靠性和观察者内可重复性。
这是一项对100例有骨盆正位和侧位X线片患者的回顾性研究。两名观察者分别在正位X线片上测量SFP角(S1终板中点至髋臼质心再至耻骨联合上中点)以及在侧位X线片上测量PT(骶骨板中点至髋臼质心再至垂直平面)。SFP参数通过以下公式定义:SFP参数 = 75 - SFP角。观察者间可靠性和观察者内可重复性采用组内相关系数(ICC)计算。SFP参数的有效性采用Pearson相关系数计算。
两名观察者的SFP参数观察者内可重复性均极佳(ICC > 0.90)。所有测量的观察者间可靠性在SFP参数方面较高(ICC > 0.80),在PT方面也较高(ICC > 0.70)。SFP参数的同时效度较高(r = 0.70)。
使用SFP参数公式从正位X线片计算PT是一个有效、可靠且可重复的公式,可用于预测矢状PT。