Suppr超能文献

放射生物学工具包TOPAS-nBio在简单DNA几何结构中的验证。

Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries.

作者信息

McNamara Aimee, Geng Changran, Turner Robert, Mendez Jose Ramos, Perl Joseph, Held Kathryn, Faddegon Bruce, Paganetti Harald, Schuemann Jan

机构信息

Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.

Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.

出版信息

Phys Med. 2017 Jan;33:207-215. doi: 10.1016/j.ejmp.2016.12.010. Epub 2016 Dec 22.

Abstract

Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can help bridge the gap between physics, chemistry and biology. The TOPAS collaboration is tackling this challenge by extending the current Monte Carlo tool to allow for sub-cellular in silico simulations in a new extension, TOPAS-nBio. TOPAS wraps and extends the Geant4 Monte Carlo simulation toolkit and the new extension allows the modeling of particles down to vibrational energies (∼2eV) within realistic biological geometries. Here we present a validation of biological geometries available in TOPAS-nBio, by comparing our results to two previously published studies. We compare the prediction of strand breaks in a simple linear DNA strand from TOPAS-nBio to a published Monte Carlo track structure simulation study. While TOPAS-nBio confirms the trend in strand break generation, it predicts a higher frequency of events below an energy of 17.5eV compared to the alternative Monte Carlo track structure study. This is due to differences in the physics models used by each code. We also compare the experimental measurement of strand breaks from incident protons in DNA plasmids to TOPAS-nBio simulations. Our results show good agreement of single and double strand breaks predicting a similar increase in the strand break yield with increasing LET.

摘要

计算模拟为定量研究辐射与生物组织的相互作用提供了一个强大的工具,并且有助于弥合物理、化学和生物学之间的差距。TOPAS合作团队正在通过扩展当前的蒙特卡罗工具来应对这一挑战,以便在新的扩展版本TOPAS-nBio中进行亚细胞计算机模拟。TOPAS包装并扩展了Geant4蒙特卡罗模拟工具包,新的扩展版本允许在真实的生物几何结构中对低至振动能量(约2电子伏特)的粒子进行建模。在此,我们通过将我们的结果与之前发表的两项研究进行比较,对TOPAS-nBio中可用的生物几何结构进行了验证。我们将TOPAS-nBio对简单线性DNA链中断裂链的预测与一项已发表的蒙特卡罗径迹结构模拟研究进行了比较。虽然TOPAS-nBio证实了断裂链产生的趋势,但与另一种蒙特卡罗径迹结构研究相比,它预测在能量低于17.5电子伏特时事件频率更高。这是由于每个代码所使用的物理模型存在差异。我们还将DNA质粒中入射质子导致的断裂链实验测量结果与TOPAS-nBio模拟进行了比较。我们的结果表明,单链和双链断裂的预测结果吻合良好,随着传能线密度增加,断裂链产率呈现出相似的增加趋势。

相似文献

引用本文的文献

本文引用的文献

1
4
Proton-induced direct and indirect damage of plasmid DNA.质子诱导的质粒DNA直接和间接损伤。
Radiat Environ Biophys. 2015 Aug;54(3):343-52. doi: 10.1007/s00411-015-0605-6. Epub 2015 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验