Suppr超能文献

胞质溶胶中金纳米颗粒对细胞核和线粒体的剂量增强效应。

Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol.

作者信息

McNamara A L, Kam W W Y, Scales N, McMahon S J, Bennett J W, Byrne H L, Schuemann J, Paganetti H, Banati R, Kuncic Z

机构信息

Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit St, Boston, MA 02114, USA. School of Physics, University of Sydney, NSW 2006, Australia.

出版信息

Phys Med Biol. 2016 Aug 21;61(16):5993-6010. doi: 10.1088/0031-9155/61/16/5993. Epub 2016 Jul 20.

Abstract

Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ∼70 eV, substantially lower than that of liquid water  ∼78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ∼1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

摘要

金纳米颗粒(GNPs)已显示出作为放射治疗剂量增强剂的潜力。由于基因组损伤会影响细胞活力,通常认为金纳米颗粒必须定位于细胞核内。然而,在实际中,金纳米颗粒倾向于定位于细胞质中,但似乎仍对细胞具有剂量增强作用。这种效应是可归因于应激诱导的生物学机制还是对核外细胞靶点的物理损伤仍不清楚。然而,越来越多的证据表明,当细胞核未被辐射直接靶向时,辐射诱导的间接过程也会影响细胞对辐射的反应。鉴于线粒体在细胞中具有许多重要的功能作用,它尤其可能是一个有效的核外辐射靶点。为了更准确地预测不同细胞器内辐射的物理效应,我们测量了完整的人类淋巴细胞JURKAT细胞以及两个单独细胞器(细胞核和线粒体)的完整化学成分。实验测量发现,所有三种生物材料具有相似的电离能,约为70电子伏特,大大低于液态水的约78电子伏特。对10 - 50 keV入射光子的蒙特卡罗模拟表明,与液态水相比,细胞和细胞器材料中的能量沉积和电离数更高。在每种材料中添加1%质量分数的金,当对所有入射光子能量进行平均时,能量沉积增加了约1.8倍。对一个真实的分隔细胞的模拟表明,细胞质溶胶中存在金时,线粒体体积内的能量沉积比细胞核体积内的增加更多。我们发现这是由于光电子使能量发生亚微米级的离域,使得线粒体成为定位于细胞质溶胶中的金纳米颗粒潜在可行的间接辐射靶点。

相似文献

引用本文的文献

本文引用的文献

9
Mitochondrial pathology: stress signals from the energy factory.线粒体病理学:能量工厂发出的应激信号。
Trends Mol Med. 2014 May;20(5):282-92. doi: 10.1016/j.molmed.2014.01.005. Epub 2014 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验