Suppr超能文献

噪声和非神经元因素对脑血流动力学信号的影响:动物研究的应用与见解

Noise and non-neuronal contributions to the BOLD signal: applications to and insights from animal studies.

作者信息

Keilholz Shella D, Pan Wen-Ju, Billings Jacob, Nezafati Maysam, Shakil Sadia

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States; Neuroscience Program, Emory University, Atlanta, GA, United States.

Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States.

出版信息

Neuroimage. 2017 Jul 1;154:267-281. doi: 10.1016/j.neuroimage.2016.12.019. Epub 2016 Dec 22.

Abstract

The BOLD signal reflects hemodynamic events within the brain, which in turn are driven by metabolic changes and neural activity. However, the link between BOLD changes and neural activity is indirect and can be influenced by a number of non-neuronal processes. Motion and physiological cycles have long been known to affect the BOLD signal and are present in both humans and animal models. Differences in physiological baseline can also contribute to intra- and inter-subject variability. The use of anesthesia, common in animal studies, alters neural activity, vascular tone, and neurovascular coupling. Most intriguing, perhaps, are the contributions from other processes that do not appear to be neural in origin but which may provide information about other aspects of neurophysiology. This review discusses different types of noise and non-neuronal contributors to the BOLD signal, sources of variability for animal studies, and insights to be gained from animal models.

摘要

血氧水平依赖(BOLD)信号反映大脑内的血流动力学事件,而这些事件反过来又由代谢变化和神经活动驱动。然而,BOLD变化与神经活动之间的联系是间接的,并且会受到许多非神经元过程的影响。长期以来,人们已知运动和生理周期会影响BOLD信号,并且在人类和动物模型中都存在。生理基线的差异也会导致个体内和个体间的变异性。在动物研究中常用的麻醉会改变神经活动、血管张力和神经血管耦合。也许最引人入胜的是其他并非源于神经但可能提供有关神经生理学其他方面信息的过程所起的作用。本综述讨论了BOLD信号的不同类型噪声和非神经元影响因素、动物研究中的变异性来源以及从动物模型中获得的见解。

相似文献

1
Noise and non-neuronal contributions to the BOLD signal: applications to and insights from animal studies.
Neuroimage. 2017 Jul 1;154:267-281. doi: 10.1016/j.neuroimage.2016.12.019. Epub 2016 Dec 22.
2
Methods for cleaning the BOLD fMRI signal.
Neuroimage. 2017 Jul 1;154:128-149. doi: 10.1016/j.neuroimage.2016.12.018. Epub 2016 Dec 9.
3
An introduction to normalization and calibration methods in functional MRI.
Psychometrika. 2013 Apr;78(2):308-21. doi: 10.1007/s11336-012-9309-x. Epub 2012 Dec 29.
4
Physiologically informed dynamic causal modeling of fMRI data.
Neuroimage. 2015 Nov 15;122:355-72. doi: 10.1016/j.neuroimage.2015.07.078. Epub 2015 Aug 5.
5
Linking brain vascular physiology to hemodynamic response in ultra-high field MRI.
Neuroimage. 2018 Mar;168:279-295. doi: 10.1016/j.neuroimage.2017.02.063. Epub 2017 Feb 22.
8
Correspondence between fMRI and electrophysiology during visual motion processing in human MT.
Neuroimage. 2017 Jul 15;155:480-489. doi: 10.1016/j.neuroimage.2017.04.007. Epub 2017 Apr 5.
9
Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal.
Neuroimage. 2019 Jul 15;195:89-103. doi: 10.1016/j.neuroimage.2019.03.057. Epub 2019 Mar 28.
10
Simultaneous task-based BOLD-fMRI and [18-F] FDG functional PET for measurement of neuronal metabolism in the human visual cortex.
Neuroimage. 2019 Apr 1;189:258-266. doi: 10.1016/j.neuroimage.2019.01.003. Epub 2019 Jan 4.

引用本文的文献

1
Respiration recording for fMRI: breathing belt versus spine coil sensor.
Imaging Neurosci (Camb). 2024 Jul 24;2. doi: 10.1162/imag_a_00239. eCollection 2024.
2
Brain-wide functional connectivity artifactually inflates throughout functional magnetic resonance imaging scans.
Nat Hum Behav. 2024 Aug;8(8):1568-1580. doi: 10.1038/s41562-024-01908-6. Epub 2024 Jun 19.
3
The decoupling between hemodynamic parameters and neural activity implies a complex origin of spontaneous brain oscillations.
Front Comput Neurosci. 2023 Jul 31;17:1214793. doi: 10.3389/fncom.2023.1214793. eCollection 2023.
4
An orderly sequence of autonomic and neural events at transient arousal changes.
Neuroimage. 2022 Dec 1;264:119720. doi: 10.1016/j.neuroimage.2022.119720. Epub 2022 Nov 2.
5
Frequency-specific coactivation patterns in resting-state and their alterations in schizophrenia: An fMRI study.
Hum Brain Mapp. 2022 Aug 15;43(12):3792-3808. doi: 10.1002/hbm.25884. Epub 2022 Apr 27.
6
Connecting the dots between cell populations, whole-brain activity, and behavior.
Neurophotonics. 2022 Jul;9(3):032208. doi: 10.1117/1.NPh.9.3.032208. Epub 2022 Mar 26.
7
Seed-based dual regression: An illustration of the impact of dual regression's inherent filtering of global signal.
J Neurosci Methods. 2022 Jan 15;366:109410. doi: 10.1016/j.jneumeth.2021.109410. Epub 2021 Nov 16.
8
Contribution of animal models toward understanding resting state functional connectivity.
Neuroimage. 2021 Dec 15;245:118630. doi: 10.1016/j.neuroimage.2021.118630. Epub 2021 Oct 10.
9
Resample aggregating improves the generalizability of connectome predictive modeling.
Neuroimage. 2021 Aug 1;236:118044. doi: 10.1016/j.neuroimage.2021.118044. Epub 2021 Apr 10.

本文引用的文献

1
Frontoparietal Functional Connectivity in the Common Marmoset.
Cereb Cortex. 2017 Aug 1;27(8):3890-3905. doi: 10.1093/cercor/bhw198.
3
Functional Connectivity Hubs and Networks in the Awake Marmoset Brain.
Front Integr Neurosci. 2016 Mar 4;10:9. doi: 10.3389/fnint.2016.00009. eCollection 2016.
4
Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states.
Neuroimage. 2016 Jun;133:111-128. doi: 10.1016/j.neuroimage.2016.02.074. Epub 2016 Mar 4.
5
Intrinsic connectivity of neural networks in the awake rabbit.
Neuroimage. 2016 Apr 1;129:260-267. doi: 10.1016/j.neuroimage.2016.01.010. Epub 2016 Jan 13.
6
Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
Neuroimage. 2016 Feb 15;127:242-256. doi: 10.1016/j.neuroimage.2015.11.055. Epub 2015 Nov 26.
7
Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.
Hum Brain Mapp. 2016 Jan;37(1):381-94. doi: 10.1002/hbm.23037. Epub 2015 Oct 29.
9
Considerations for resting state functional MRI and functional connectivity studies in rodents.
Front Neurosci. 2015 Aug 5;9:269. doi: 10.3389/fnins.2015.00269. eCollection 2015.
10
Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.
Neuroimage. 2015 Dec;123:11-21. doi: 10.1016/j.neuroimage.2015.07.090. Epub 2015 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验