Keilholz Shella D, Pan Wen-Ju, Billings Jacob, Nezafati Maysam, Shakil Sadia
Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States; Neuroscience Program, Emory University, Atlanta, GA, United States.
Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States.
Neuroimage. 2017 Jul 1;154:267-281. doi: 10.1016/j.neuroimage.2016.12.019. Epub 2016 Dec 22.
The BOLD signal reflects hemodynamic events within the brain, which in turn are driven by metabolic changes and neural activity. However, the link between BOLD changes and neural activity is indirect and can be influenced by a number of non-neuronal processes. Motion and physiological cycles have long been known to affect the BOLD signal and are present in both humans and animal models. Differences in physiological baseline can also contribute to intra- and inter-subject variability. The use of anesthesia, common in animal studies, alters neural activity, vascular tone, and neurovascular coupling. Most intriguing, perhaps, are the contributions from other processes that do not appear to be neural in origin but which may provide information about other aspects of neurophysiology. This review discusses different types of noise and non-neuronal contributors to the BOLD signal, sources of variability for animal studies, and insights to be gained from animal models.
血氧水平依赖(BOLD)信号反映大脑内的血流动力学事件,而这些事件反过来又由代谢变化和神经活动驱动。然而,BOLD变化与神经活动之间的联系是间接的,并且会受到许多非神经元过程的影响。长期以来,人们已知运动和生理周期会影响BOLD信号,并且在人类和动物模型中都存在。生理基线的差异也会导致个体内和个体间的变异性。在动物研究中常用的麻醉会改变神经活动、血管张力和神经血管耦合。也许最引人入胜的是其他并非源于神经但可能提供有关神经生理学其他方面信息的过程所起的作用。本综述讨论了BOLD信号的不同类型噪声和非神经元影响因素、动物研究中的变异性来源以及从动物模型中获得的见解。