Suppr超能文献

动物模型对理解静息态功能连接的贡献。

Contribution of animal models toward understanding resting state functional connectivity.

机构信息

Medical Imaging Physics, Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich 52425, Germany.

Department of Physics, University of California San Diego, La Jolla, CA 92093, USA.

出版信息

Neuroimage. 2021 Dec 15;245:118630. doi: 10.1016/j.neuroimage.2021.118630. Epub 2021 Oct 10.

Abstract

Functional connectivity, which reflects the spatial and temporal organization of intrinsic activity throughout the brain, is one of the most studied measures in human neuroimaging research. The noninvasive acquisition of resting state functional magnetic resonance imaging (rs-fMRI) allows the characterization of features designated as functional networks, functional connectivity gradients, and time-varying activity patterns that provide insight into the intrinsic functional organization of the brain and potential alterations related to brain dysfunction. Functional connectivity, hence, captures dimensions of the brain's activity that have enormous potential for both clinical and preclinical research. However, the mechanisms underlying functional connectivity have yet to be fully characterized, hindering interpretation of rs-fMRI studies. As in other branches of neuroscience, the identification of the neurophysiological processes that contribute to functional connectivity largely depends on research conducted on laboratory animals, which provide a platform where specific, multi-dimensional investigations that involve invasive measurements can be carried out. These highly controlled experiments facilitate the interpretation of the temporal correlations observed across the brain. Indeed, information obtained from animal experimentation to date is the basis for our current understanding of the underlying basis for functional brain connectivity. This review presents a compendium of some of the most critical advances in the field based on the efforts made by the animal neuroimaging community.

摘要

功能连接反映了大脑内部活动的空间和时间组织,是人类神经影像学研究中最受关注的测量方法之一。静息态功能磁共振成像(rs-fMRI)的非侵入性采集允许对指定为功能网络、功能连接梯度和时变活动模式的特征进行特征描述,这些特征提供了对大脑内在功能组织的深入了解以及与大脑功能障碍相关的潜在改变。因此,功能连接捕捉到了大脑活动的多个维度,这些维度具有巨大的临床前和临床研究潜力。然而,功能连接的机制尚未得到充分描述,这阻碍了 rs-fMRI 研究的解释。与神经科学的其他分支一样,对有助于功能连接的神经生理过程的识别在很大程度上取决于在实验室动物身上进行的研究,这些研究提供了一个平台,可以在这个平台上进行特定的、涉及侵入性测量的多维研究。这些高度受控的实验有助于解释大脑之间观察到的时间相关性。事实上,迄今为止从动物实验中获得的信息是我们目前对功能脑连接基础的理解的基础。本综述根据动物神经影像学社区的努力,汇集了该领域的一些最关键的进展。

相似文献

1
Contribution of animal models toward understanding resting state functional connectivity.
Neuroimage. 2021 Dec 15;245:118630. doi: 10.1016/j.neuroimage.2021.118630. Epub 2021 Oct 10.
2
Structural Basis of Large-Scale Functional Connectivity in the Mouse.
J Neurosci. 2017 Aug 23;37(34):8092-8101. doi: 10.1523/JNEUROSCI.0438-17.2017. Epub 2017 Jul 17.
3
Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
Neuroimage. 2015 Feb 1;106:111-22. doi: 10.1016/j.neuroimage.2014.11.028. Epub 2014 Nov 21.
4
Catecholaminergic Neuromodulation Shapes Intrinsic MRI Functional Connectivity in the Human Brain.
J Neurosci. 2016 Jul 27;36(30):7865-76. doi: 10.1523/JNEUROSCI.0744-16.2016.
5
rest2vec: Vectorizing the resting-state functional connectome using graph embedding.
Neuroimage. 2021 Feb 1;226:117538. doi: 10.1016/j.neuroimage.2020.117538. Epub 2020 Nov 11.
6
State-unspecific patterns of whole-brain functional connectivity from resting and multiple task states predict stable individual traits.
Neuroimage. 2019 Nov 1;201:116036. doi: 10.1016/j.neuroimage.2019.116036. Epub 2019 Jul 18.
8
Aging relates to a disproportionately weaker functional architecture of brain networks during rest and task states.
Neuroimage. 2020 Apr 1;209:116521. doi: 10.1016/j.neuroimage.2020.116521. Epub 2020 Jan 8.
9
Intracranial Electrophysiology Reveals Reproducible Intrinsic Functional Connectivity within Human Brain Networks.
J Neurosci. 2018 Apr 25;38(17):4230-4242. doi: 10.1523/JNEUROSCI.0217-18.2018. Epub 2018 Apr 6.
10
Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI.
Neuroimage. 2015 Jan 15;105:286-99. doi: 10.1016/j.neuroimage.2014.09.058. Epub 2014 Oct 2.

引用本文的文献

1
Rest assured: Dynamic functional connectivity and the baseline state of the human brain.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00365. eCollection 2024.
2
SORDINO for Silent, Sensitive, Specific, and Artifact-Resisting fMRI in awake behaving mice.
bioRxiv. 2025 Mar 13:2025.03.10.642406. doi: 10.1101/2025.03.10.642406.
5
High Spatiotemporal Resolution Radial Encoding Single-Vessel fMRI.
Adv Sci (Weinh). 2024 Jul;11(26):e2309218. doi: 10.1002/advs.202309218. Epub 2024 Apr 30.
6
Distinct neurochemical influences on fMRI response polarity in the striatum.
Nat Commun. 2024 Mar 1;15(1):1916. doi: 10.1038/s41467-024-46088-z.
7
Arousal as a universal embedding for spatiotemporal brain dynamics.
bioRxiv. 2025 Feb 18:2023.11.06.565918. doi: 10.1101/2023.11.06.565918.
8
Specific and Nonuniform Brain States during Cold Perception in Mice.
J Neurosci. 2024 Mar 20;44(12):e0909232023. doi: 10.1523/JNEUROSCI.0909-23.2023.
10
Connectivity of the Brain in the Light of Chemogenetic Modulation of Neuronal Activity.
Acta Naturae. 2023 Apr-Jun;15(2):4-13. doi: 10.32607/actanaturae.11895.

本文引用的文献

1
Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI.
Cereb Cortex. 2021 Jul 29;31(9):4053-4067. doi: 10.1093/cercor/bhab068.
2
Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
Science. 2021 Apr 16;372(6539). doi: 10.1126/science.abf4588.
3
Opposed hemodynamic responses following increased excitation and parvalbumin-based inhibition.
J Cereb Blood Flow Metab. 2021 Apr;41(4):841-856. doi: 10.1177/0271678X20930831. Epub 2020 Jun 17.
4
Brain microvasculature has a common topology with local differences in geometry that match metabolic load.
Neuron. 2021 Apr 7;109(7):1168-1187.e13. doi: 10.1016/j.neuron.2021.02.006. Epub 2021 Mar 2.
5
Brain capillary pericytes exert a substantial but slow influence on blood flow.
Nat Neurosci. 2021 May;24(5):633-645. doi: 10.1038/s41593-020-00793-2. Epub 2021 Feb 18.
6
Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain.
Neuroimage. 2021 May 1;231:117827. doi: 10.1016/j.neuroimage.2021.117827. Epub 2021 Feb 5.
8
Brain capillary pericytes and neurovascular coupling.
Comp Biochem Physiol A Mol Integr Physiol. 2021 Apr;254:110893. doi: 10.1016/j.cbpa.2020.110893. Epub 2021 Jan 6.
9
Network structure of the mouse brain connectome with voxel resolution.
Sci Adv. 2020 Dec 18;6(51). doi: 10.1126/sciadv.abb7187. Print 2020 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验