Suppr超能文献

动物模型对理解静息态功能连接的贡献。

Contribution of animal models toward understanding resting state functional connectivity.

机构信息

Medical Imaging Physics, Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich 52425, Germany.

Department of Physics, University of California San Diego, La Jolla, CA 92093, USA.

出版信息

Neuroimage. 2021 Dec 15;245:118630. doi: 10.1016/j.neuroimage.2021.118630. Epub 2021 Oct 10.

Abstract

Functional connectivity, which reflects the spatial and temporal organization of intrinsic activity throughout the brain, is one of the most studied measures in human neuroimaging research. The noninvasive acquisition of resting state functional magnetic resonance imaging (rs-fMRI) allows the characterization of features designated as functional networks, functional connectivity gradients, and time-varying activity patterns that provide insight into the intrinsic functional organization of the brain and potential alterations related to brain dysfunction. Functional connectivity, hence, captures dimensions of the brain's activity that have enormous potential for both clinical and preclinical research. However, the mechanisms underlying functional connectivity have yet to be fully characterized, hindering interpretation of rs-fMRI studies. As in other branches of neuroscience, the identification of the neurophysiological processes that contribute to functional connectivity largely depends on research conducted on laboratory animals, which provide a platform where specific, multi-dimensional investigations that involve invasive measurements can be carried out. These highly controlled experiments facilitate the interpretation of the temporal correlations observed across the brain. Indeed, information obtained from animal experimentation to date is the basis for our current understanding of the underlying basis for functional brain connectivity. This review presents a compendium of some of the most critical advances in the field based on the efforts made by the animal neuroimaging community.

摘要

功能连接反映了大脑内部活动的空间和时间组织,是人类神经影像学研究中最受关注的测量方法之一。静息态功能磁共振成像(rs-fMRI)的非侵入性采集允许对指定为功能网络、功能连接梯度和时变活动模式的特征进行特征描述,这些特征提供了对大脑内在功能组织的深入了解以及与大脑功能障碍相关的潜在改变。因此,功能连接捕捉到了大脑活动的多个维度,这些维度具有巨大的临床前和临床研究潜力。然而,功能连接的机制尚未得到充分描述,这阻碍了 rs-fMRI 研究的解释。与神经科学的其他分支一样,对有助于功能连接的神经生理过程的识别在很大程度上取决于在实验室动物身上进行的研究,这些研究提供了一个平台,可以在这个平台上进行特定的、涉及侵入性测量的多维研究。这些高度受控的实验有助于解释大脑之间观察到的时间相关性。事实上,迄今为止从动物实验中获得的信息是我们目前对功能脑连接基础的理解的基础。本综述根据动物神经影像学社区的努力,汇集了该领域的一些最关键的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce4e/9031339/2268cc01c6db/nihms-1796165-f0001.jpg

相似文献

2
Structural Basis of Large-Scale Functional Connectivity in the Mouse.小鼠大规模功能连接的结构基础
J Neurosci. 2017 Aug 23;37(34):8092-8101. doi: 10.1523/JNEUROSCI.0438-17.2017. Epub 2017 Jul 17.

引用本文的文献

5
High Spatiotemporal Resolution Radial Encoding Single-Vessel fMRI.高时空分辨率径向编码单血管 fMRI。
Adv Sci (Weinh). 2024 Jul;11(26):e2309218. doi: 10.1002/advs.202309218. Epub 2024 Apr 30.

本文引用的文献

8
Brain capillary pericytes and neurovascular coupling.脑毛细血管周细胞与神经血管耦联。
Comp Biochem Physiol A Mol Integr Physiol. 2021 Apr;254:110893. doi: 10.1016/j.cbpa.2020.110893. Epub 2021 Jan 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验