Department of Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road, White Plains, NY 10605, USA.
Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research,140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA.
J Neurosci Methods. 2022 Jan 15;366:109410. doi: 10.1016/j.jneumeth.2021.109410. Epub 2021 Nov 16.
Functional connectivity (FC) maps from brain fMRI data are often derived with seed-based methods that estimate temporal correlations between the time course in a predefined region (seed) and other brain regions (SCA, seed-based correlation analysis). Standard dual regression, which uses a set of spatial regressor maps, can detect FC with entire brain "networks," such as the default mode network, but may not be feasible when detecting FC associated with a single small brain region alone (for example, the amygdala).
We explored seed-based dual regression (SDR) from theoretical and practical points of view. SDR is a modified implementation of dual regression where the set of spatial regressors is replaced by a single binary spatial map of the seed region.
SDR allowed detection of FC with small brain regions.
For both synthetic and natural fMRI data, detection of FC with SDR was identical to that obtained with SCA after removal of global signal from fMRI data with global signal regression (GSR). In the absence of GSR, detection of FC was significantly improved when using SDR compared with SCA.
The improved FC detection achieved with SDR was related to a partial filtering of the global signal that occurred during spatial regression, an integral part of dual regression. This filtering can sometimes lead to spurious negative correlations that result in a widespread negative bias in FC derived with any application of dual regression. We provide guidelines for how to identify and correct this potential problem.
脑功能磁共振成像 (fMRI) 数据的功能连接 (FC) 图通常采用基于种子的方法得出,该方法估计预定义区域(种子)和其他脑区(SCA,基于种子的相关分析)之间时间过程的时间相关性。使用一组空间回归图的标准双回归可以检测整个大脑“网络”(例如默认模式网络)的 FC,但在单独检测与单个小脑区相关的 FC 时可能不可行(例如杏仁核)。
我们从理论和实践的角度探讨了基于种子的双回归 (SDR)。SDR 是双回归的一种改进实现,其中空间回归器集被种子区域的单个二进制空间图代替。
SDR 允许检测小脑区的 FC。
对于合成和自然 fMRI 数据,在使用全局信号回归 (GSR) 从 fMRI 数据中去除全局信号后,SDR 与 SCA 检测到的 FC 相同。在没有 GSR 的情况下,与 SCA 相比,使用 SDR 时,FC 的检测得到了显著改善。
SDR 实现的改进 FC 检测与空间回归过程中全局信号的部分滤波有关,这是双回归的一个组成部分。这种滤波有时会导致虚假的负相关,从而导致使用任何双回归应用程序得出的 FC 产生广泛的负偏差。我们提供了如何识别和纠正此潜在问题的指南。