Suppr超能文献

基于种子的双回归:双回归对全局信号固有滤波影响的说明。

Seed-based dual regression: An illustration of the impact of dual regression's inherent filtering of global signal.

机构信息

Department of Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road, White Plains, NY 10605, USA.

Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research,140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA.

出版信息

J Neurosci Methods. 2022 Jan 15;366:109410. doi: 10.1016/j.jneumeth.2021.109410. Epub 2021 Nov 16.

Abstract

BACKGROUND

Functional connectivity (FC) maps from brain fMRI data are often derived with seed-based methods that estimate temporal correlations between the time course in a predefined region (seed) and other brain regions (SCA, seed-based correlation analysis). Standard dual regression, which uses a set of spatial regressor maps, can detect FC with entire brain "networks," such as the default mode network, but may not be feasible when detecting FC associated with a single small brain region alone (for example, the amygdala).

NEW METHOD

We explored seed-based dual regression (SDR) from theoretical and practical points of view. SDR is a modified implementation of dual regression where the set of spatial regressors is replaced by a single binary spatial map of the seed region.

RESULTS

SDR allowed detection of FC with small brain regions.

COMPARISON WITH EXISTING METHOD

For both synthetic and natural fMRI data, detection of FC with SDR was identical to that obtained with SCA after removal of global signal from fMRI data with global signal regression (GSR). In the absence of GSR, detection of FC was significantly improved when using SDR compared with SCA.

CONCLUSION

The improved FC detection achieved with SDR was related to a partial filtering of the global signal that occurred during spatial regression, an integral part of dual regression. This filtering can sometimes lead to spurious negative correlations that result in a widespread negative bias in FC derived with any application of dual regression. We provide guidelines for how to identify and correct this potential problem.

摘要

背景

脑功能磁共振成像 (fMRI) 数据的功能连接 (FC) 图通常采用基于种子的方法得出,该方法估计预定义区域(种子)和其他脑区(SCA,基于种子的相关分析)之间时间过程的时间相关性。使用一组空间回归图的标准双回归可以检测整个大脑“网络”(例如默认模式网络)的 FC,但在单独检测与单个小脑区相关的 FC 时可能不可行(例如杏仁核)。

新方法

我们从理论和实践的角度探讨了基于种子的双回归 (SDR)。SDR 是双回归的一种改进实现,其中空间回归器集被种子区域的单个二进制空间图代替。

结果

SDR 允许检测小脑区的 FC。

与现有方法的比较

对于合成和自然 fMRI 数据,在使用全局信号回归 (GSR) 从 fMRI 数据中去除全局信号后,SDR 与 SCA 检测到的 FC 相同。在没有 GSR 的情况下,与 SCA 相比,使用 SDR 时,FC 的检测得到了显著改善。

结论

SDR 实现的改进 FC 检测与空间回归过程中全局信号的部分滤波有关,这是双回归的一个组成部分。这种滤波有时会导致虚假的负相关,从而导致使用任何双回归应用程序得出的 FC 产生广泛的负偏差。我们提供了如何识别和纠正此潜在问题的指南。

相似文献

1
Seed-based dual regression: An illustration of the impact of dual regression's inherent filtering of global signal.
J Neurosci Methods. 2022 Jan 15;366:109410. doi: 10.1016/j.jneumeth.2021.109410. Epub 2021 Nov 16.
2
Omission of temporal nuisance regressors from dual regression can improve accuracy of fMRI functional connectivity maps.
Hum Brain Mapp. 2019 Oct 1;40(14):4005-4025. doi: 10.1002/hbm.24692. Epub 2019 Jun 12.
3
Bayesian framework for robust seed-based correlation analysis.
Med Phys. 2019 Jul;46(7):3055-3066. doi: 10.1002/mp.13522. Epub 2019 May 18.
4
Impact of global signal regression on characterizing dynamic functional connectivity and brain states.
Neuroimage. 2018 Jun;173:127-145. doi: 10.1016/j.neuroimage.2018.02.036. Epub 2018 Feb 21.
5
Motion-Dependent Effects of Functional Magnetic Resonance Imaging Preprocessing Methodology on Global Functional Connectivity.
Brain Connect. 2020 Dec;10(10):578-584. doi: 10.1089/brain.2020.0854. Epub 2020 Nov 19.
6
Hybrid ICA-Seed-Based Methods for fMRI Functional Connectivity Assessment: A Feasibility Study.
Int J Biomed Imaging. 2010;2010. doi: 10.1155/2010/868976. Epub 2010 Jun 28.
7
Global signal regression acts as a temporal downweighting process in resting-state fMRI.
Neuroimage. 2017 May 15;152:602-618. doi: 10.1016/j.neuroimage.2017.01.015. Epub 2017 Jan 9.
9
Intensity-based masking: A tool to improve functional connectivity results of resting-state fMRI.
Hum Brain Mapp. 2016 Jul;37(7):2407-18. doi: 10.1002/hbm.23182. Epub 2016 Mar 28.
10
Template based rotation: a method for functional connectivity analysis with a priori templates.
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):620-36. doi: 10.1016/j.neuroimage.2014.08.022. Epub 2014 Aug 21.

本文引用的文献

1
Challenges and future directions for representations of functional brain organization.
Nat Neurosci. 2020 Dec;23(12):1484-1495. doi: 10.1038/s41593-020-00726-z. Epub 2020 Oct 26.
2
Variability in the analysis of a single neuroimaging dataset by many teams.
Nature. 2020 Jun;582(7810):84-88. doi: 10.1038/s41586-020-2314-9. Epub 2020 May 20.
3
On the Quality, Statistical Efficiency, and Safety of Simultaneously Recorded Multiband fMRI/EEG.
Brain Topogr. 2020 May;33(3):303-316. doi: 10.1007/s10548-020-00761-w. Epub 2020 Mar 6.
4
Omission of temporal nuisance regressors from dual regression can improve accuracy of fMRI functional connectivity maps.
Hum Brain Mapp. 2019 Oct 1;40(14):4005-4025. doi: 10.1002/hbm.24692. Epub 2019 Jun 12.
5
Global signal regression strengthens association between resting-state functional connectivity and behavior.
Neuroimage. 2019 Aug 1;196:126-141. doi: 10.1016/j.neuroimage.2019.04.016. Epub 2019 Apr 8.
7
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage. 2018 May 1;171:415-436. doi: 10.1016/j.neuroimage.2017.12.073. Epub 2017 Dec 24.
8
Resting-state functional connectivity remains unaffected by preceding exposure to aversive visual stimuli.
Neuroimage. 2018 Feb 15;167:354-365. doi: 10.1016/j.neuroimage.2017.11.046. Epub 2017 Nov 22.
9
On Global fMRI Signals and Simulations.
Trends Cogn Sci. 2017 Dec;21(12):911-913. doi: 10.1016/j.tics.2017.09.002. Epub 2017 Sep 19.
10
Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
Neuroimage. 2017 Jul 1;154:174-187. doi: 10.1016/j.neuroimage.2017.03.020. Epub 2017 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验