Univ Lyon, Université Claude Bernard Lyon , CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.
NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette, France.
ACS Nano. 2016 Dec 27;10(12):11266-11279. doi: 10.1021/acsnano.6b06406. Epub 2016 Nov 21.
Homodimers of noble metal nanocubes form model plasmonic systems where the localized plasmon resonances sustained by each particle not only hybridize but also coexist with excitations of a different nature: surface plasmon polaritons confined within the Fabry-Perot cavity delimited by facing cube surfaces (i.e., gap plasmons). Destructive interference in the strong coupling between one of these highly localized modes and the highly radiating longitudinal dipolar plasmon of the dimer is responsible for the formation of a Fano resonance profile and the opening of a spectral window of anomalous transparency for the exciting light. We report on the clear experimental evidence of this effect in the case of 50 nm silver and 160 nm gold nanocube dimers studied by spatial modulation spectroscopy at the single particle level. A numerical study based on a plasmon mode analysis leads us to unambiguously identify the main cavity mode involved in this process and especially the major role played by its symmetry. The Fano depletion dip is red-shifted when the gap size is decreasing. It is also blue-shifted and all the more pronounced that the cube edge rounding is large. Combining nanopatch antenna and plasmon hybridization descriptions, we quantify the key role of the face-to-face distance and the cube edge morphology on the spectral profile of the transparency dip.
贵金属纳米立方体形的同二聚体形成了模型等离子体系统,其中每个粒子所维持的局域等离子体共振不仅发生杂化,而且还与不同性质的激发共存:在由相对立方表面限定的法布里-珀罗腔(即间隙等离子体)内被限制的表面等离子体极化激元。在这些高度局域模式之一与二聚体的高度辐射纵向偶极等离子体之间的强耦合中的相消干涉是形成 Fano 共振轮廓和为激发光打开异常透明光谱窗口的原因。我们在通过空间调制光谱在单粒子水平上研究的 50nm 银和 160nm 金纳米立方体形二聚体的情况下,报告了这种效应的明确实验证据。基于等离子体模式分析的数值研究使我们能够明确识别涉及该过程的主要腔模式,特别是其对称性的主要作用。当间隙尺寸减小时,Fano 耗尽峰发生红移。当立方体形边缘的圆化较大时,它也会发生蓝移,并且更加明显。结合纳米贴片天线和等离子体杂化描述,我们量化了面对面距离和立方体形边缘形态对透明度谷光谱轮廓的关键作用。