Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada.
Stat Methods Med Res. 2018 Sep;27(9):2722-2741. doi: 10.1177/0962280216684671. Epub 2016 Dec 26.
Publication bias can significantly limit the validity of meta-analysis when trying to draw conclusion about a research question from independent studies. Most research on detection and correction for publication bias in meta-analysis focus mainly on funnel plot-based methodologies or selection models. In this paper, we formulate publication bias as a truncated distribution problem, and propose new parametric solutions. We develop methodologies of estimating the underlying overall effect size and the severity of publication bias. We distinguish the two major situations, in which publication bias may be induced by: (1) small effect size or (2) large p-value. We consider both fixed and random effects models, and derive estimators for the overall mean and the truncation proportion. These estimators will be obtained using maximum likelihood estimation and method of moments under fixed- and random-effects models, respectively. We carried out extensive simulation studies to evaluate the performance of our methodology, and to compare with the non-parametric Trim and Fill method based on funnel plot. We find that our methods based on truncated normal distribution perform consistently well, both in detecting and correcting publication bias under various situations.
发表偏倚会极大地限制元分析结论的有效性,因为元分析是从独立研究中得出结论。大多数关于元分析中检测和纠正发表偏倚的研究主要集中在漏斗图方法或选择模型上。在本文中,我们将发表偏倚表述为截断分布问题,并提出新的参数解决方案。我们开发了估计潜在总体效应大小和发表偏倚严重程度的方法。我们区分了两种主要情况,即发表偏倚可能是由:(1)小效应大小或(2)大 p 值引起的。我们考虑了固定效应模型和随机效应模型,并分别为总体平均值和截断比例推导了估计量。这些估计量将分别使用最大似然估计和固定效应模型和随机效应模型下的矩法获得。我们进行了广泛的模拟研究,以评估我们的方法的性能,并与基于漏斗图的非参数 Trim and Fill 方法进行比较。我们发现,我们基于截断正态分布的方法在各种情况下检测和纠正发表偏倚的性能都非常好。