Shi Linyu, Lin Lifeng
Department of Statistics, Florida State University, FL.
Medicine (Baltimore). 2019 Jun;98(23):e15987. doi: 10.1097/MD.0000000000015987.
Publication bias is a type of systematic error when synthesizing evidence that cannot represent the underlying truth. Clinical studies with favorable results are more likely published and thus exaggerate the synthesized evidence in meta-analyses. The trim-and-fill method is a popular tool to detect and adjust for publication bias. Simulation studies have been performed to assess this method, but they may not fully represent realistic settings about publication bias. Based on real-world meta-analyses, this article provides practical guidelines and recommendations for using the trim-and-fill method. We used a worked illustrative example to demonstrate the idea of the trim-and-fill method, and we reviewed three estimators (R0, L0, and Q0) for imputing missing studies. A resampling method was proposed to calculate P values for all 3 estimators. We also summarized available meta-analysis software programs for implementing the trim-and-fill method. Moreover, we applied the method to 29,932 meta-analyses from the Cochrane Database of Systematic Reviews, and empirically evaluated its overall performance. We carefully explored potential issues occurred in our analysis. The estimators L0 and Q0 detected at least one missing study in more meta-analyses than R0, while Q0 often imputed more missing studies than L0. After adding imputed missing studies, the significance of heterogeneity and overall effect sizes changed in many meta-analyses. All estimators generally converged fast. However, L0 and Q0 failed to converge in a few meta-analyses that contained studies with identical effect sizes. Also, P values produced by different estimators could yield different conclusions of publication bias significance. Outliers and the pre-specified direction of missing studies could have influential impact on the trim-and-fill results. Meta-analysts are recommended to perform the trim-and-fill method with great caution when using meta-analysis software programs. Some default settings (e.g., the choice of estimators and the direction of missing studies) in the programs may not be optimal for a certain meta-analysis; they should be determined on a case-by-case basis. Sensitivity analyses are encouraged to examine effects of different estimators and outlying studies. Also, the trim-and-fill estimator should be routinely reported in meta-analyses, because the results depend highly on it.
发表偏倚是在综合证据时出现的一种系统误差,它无法代表潜在的真实情况。结果良好的临床研究更有可能被发表,从而在荟萃分析中夸大了综合证据。修剪填充法是一种用于检测和调整发表偏倚的常用工具。已经进行了模拟研究来评估该方法,但它们可能无法完全代表发表偏倚的实际情况。基于实际的荟萃分析,本文提供了使用修剪填充法的实用指南和建议。我们使用了一个实际示例来演示修剪填充法的思路,并回顾了三种用于推断缺失研究的估计量(R0、L0和Q0)。提出了一种重采样方法来计算所有三种估计量的P值。我们还总结了用于实施修剪填充法的可用荟萃分析软件程序。此外,我们将该方法应用于Cochrane系统评价数据库中的29932项荟萃分析,并对其整体性能进行了实证评估。我们仔细探讨了分析中出现的潜在问题。估计量L0和Q0在更多的荟萃分析中比R0检测到至少一项缺失研究,而Q0通常比L0推断出更多的缺失研究。添加推断出的缺失研究后,许多荟萃分析中异质性和总体效应大小的显著性发生了变化。所有估计量通常都收敛得很快。然而,L0和Q0在一些包含效应大小相同的研究的荟萃分析中未能收敛。此外,不同估计量产生的P值可能会得出关于发表偏倚显著性的不同结论。异常值和缺失研究的预先指定方向可能会对修剪填充结果产生有影响的作用。建议荟萃分析人员在使用荟萃分析软件程序时非常谨慎地执行修剪填充法。程序中的一些默认设置(例如,估计量的选择和缺失研究的方向)可能对某些荟萃分析不是最优的;应根据具体情况确定。鼓励进行敏感性分析以检查不同估计量和异常研究的影响。此外,在荟萃分析中应常规报告修剪填充估计量,因为结果高度依赖于它。